学年

質問の種類

数学 高校生

この125の[1][2]の話なのですが、チャートに付いている解説を聞いてみたら、∠Aは向かいの辺が一番大きくなることはないから鈍角にはならないと言っていましたが、∠Cも向かいの辺が一番大きくなることはないのではないかと思いわからなくなりました。 教えて欲しいです🙇‍♀️

基本 例題 125 鈍角 (鋭角) 三角形となる条件 △ABCにおいて, a=4, b=5 とする。 1辺の長さc の値の範囲を求めよ。 (2)△ABCが鈍角三角形のとき、辺の長さの値の範囲を求めよ。 CHART & SOLUTION 三角形の成立条件 a <b+c, b<c+a,c<a+b ZA Da²<b²+c² p.194,195 基本事項 3. 辺と角の関係 ∠Aが直角 ∠Aが鈍角 a=b2+c a²>b2+c2 205 (1) 三角形の成立条件, (2) 鈍角三角形となる条件からの値の範囲を求める。 (2)では,∠Bが鈍角の場合と∠Cが鈍角の場合があることに注意する。 解答 4 14 081= 別解 (1) 三角形の成立条 件から (1) 三角形の成立条件から 4 4<5+c, 5<c+4, c<4+5 CV) - 081 整理して -1<c, 1<c, c<9 共通範囲を求めて 1 <c <9 ...... ① 2) 辺BC は最大辺ではないから,∠Aは最大角ではない。 すなわち, ∠Aは鈍角ではない。 [1] ∠B が鈍角のとき b2c2+α から よって c²<9 c> 0 であるから [2] ∠C が鈍角のとき c2> d' + b2 から よって c²>41 c>0 であるから 52c2+42 0<c<3......②. C242+52 c√41 ③ la-bk<c<a+b よって |4-5| <c<4+5 ゆえに 1 <c <9 (p.1954 ② 参照) [1] ∠B が鈍角 A #OBAL 5 4 B [2] ∠Cが鈍角 C 15 ② ③ を合わせた範囲は 0<c<3, √41 <c ...... ④ √41<c よって, 求めるcの値の範囲は,① ④の共通範囲で 1<c<3, √41<c<9 B 4 ← ① かつ (② または ③ 内角のどれか1つが鈍角

解決済み 回答数: 1
数学 高校生

(2)で、2枚目画像の右側で、 「ABは2より大きいから不適」、「ABはACより小さくなるから適する」と教えていただいたのですがこの部分がわかりません。 教えてください。

[1] αは正の定数とし, 集合Pを次のように定める。 M P={x|x²-(a-1)x-a≦0, x は整数 (1)a=4 のとき,集合Pの要素をすべて求めよ。 -1.0,123,4 (2) 集合Pの要素の個数が5個であるようなαの値の範囲を求めよ。 3≦ac4 [2] 次の太郎さんと花子さんの会話を読んで,以下の問いに答えよ。 (配点 10 ) -3-2-1 太郎:「三角比(図形と計量)」については十分勉強したよ。 問題を出してみてよ。 250 1 花子: 0 は鋭角で,sin = となるようなのは何度かな。 太郎 : 鋭角という条件があるから,0 (ア) だ 08 A 3 花子: 正解です。では, 0 は鋭角で, sin0= となるような日は何度かな。 4 太郎 正確な角度はわからないけど,0は (1) の範囲にあることがわかるね。 21 60 花子:そうだね。 それでは,∠BAC が鋭角で, sin < BAC 3. BC=√3, CA=2 で == 4' あるような △ABC は 「鋭角三角形」 と 「鈍角三角形」の2種類あるんだけど, △ABC が鈍角三角形になるときの辺ABの長さはいくらになるかわかるかな。 太郎 : なかなか難しい問題だね。 考えてみるよ。 (1) (ア) に当てはまる数を答えよ。 また, (イ) に当てはまる最も適当なものを, 次 の1~6のうちから一つ選び、番号で答えよ。 f(x-x) 1 0°<0 < 15° 2 15°<0<30° 330°045° 445°<0<60° 560°0<75° 675°<0 <90° (OSA) 3 2 △ABC が鈍角三角形であり,∠BACが鋭角で, sin ∠BAC= = BC=√3, CA = 2 4' のとき, sin∠ABCの値を求めよ。 また, 辺ABの長さを求めよ。 (配点 10)

解決済み 回答数: 1
数学 高校生

(2)で、 なぜ私の解き方は間違っているのか教えてください。 また、AB=√7±√3/2と出てきたらどっちが正しい値かを調べるにはどうしたらいいですか? お願いします。

B2 [1] αは正の定数とし, 集合Pを次のように定める。 mm P={x|x²-(a-1)x-a≧0, xは整数 } (1)a=4 のとき,集合Pの要素をすべて求めよ。 4.0.1.23.4 (2)集合Pの要素の個数が5個であるようなαの値の範囲を求めよ。 3≦ac4 (配点 10 ) 4-3-2- [2] 次の太郎さんと花子さんの会話を読んで,以下の問いに答えよ。 太郎:「三角比(図形と計量)」 については十分勉強したよ。 問題を出してみてよ。 花子: 0は鋭角で, sin 0 となるような日は何度かな。 3081) 1 $0 太郎: 鋭角という条件があるから,0= (ア) だね。 08 花子: 正解です。 では, 0 は鋭角で, sin となるようなは何度かな。 4 太郎:正確な角度はわからないけど,0は (イ) の範囲にあることがわかるね。準 花子: そうだね。 それでは, ∠BAC が鋭角で, sin ∠BAC = =2,BC=√3. CA=2で あるような △ABCは「鋭角三角形」 と 「鈍角三角形」の2種類あるんだけど、 △ABC が鈍角三角形になるときの辺ABの長さはいくらになるかわかるかな。 太郎 : なかなか難しい問題だね。 考えてみるよ。 (1) (ア) に当てはまる数を答えよ。 また, (イ) に当てはまる最も適当なものを、次 の1~6のうちから一つ選び、番号で答えよ。 10°<0<15° 215°0<30° 4 45°<0<60° 560°0<75° 330°045° 675° <0 <90° 2 △ABC が鈍角三角形であり,<BACが鋭角で, sin BAC=4, BC=√3,CA=2 のとき, sin∠ABCの値を求めよ。 また, 辺AB の長さを求めよ。 E (配点 10) A² = b²+c² -2bc cos A

解決済み 回答数: 1
数学 中学生

全部教えてください! 書いてるところは合ってるかも知りたいです

5章 相似な図形 5章の確認 1 相似条件と相似比 右の図で、 ∠BAC = ∠BCD である。 次の問 いに答えよ。 □(1) 相似な三角形を記号を使って表せ。 また, そのときに使った 相似条件を書け。 △ABCDLCBD □ (2) の値を求めよ。 24.2=3x 2x=3 B 3 5章 相似な図形 5章の応用 1 右の図のような鈍角三角形ABCがある。 点Pは点Aを出発 して毎秒0.5cmの速さで辺AB上を点Bまで進む。このとき 2つの三角形ABCと△PBDが相似になることが2回ある。 それは何秒後と何秒後か。 12 cm -P -2.. 32:2 ★ 2 右の図のように, △ABCの辺BCの中点をDとし,辺AB上 に点Eをとり,辺CAの延長と線分DEの延長との交点をFと する。 AC=12cm, DE: EF=2:1のとき, 線分FAの長さ を求めよ。 2 三角形と比・平行線と比次の図で, xの値をそれぞれ求めよ。 □ (1) DE // AC □ (2) a//b//c □ (3) AD//EF//BC A--8-D EF B x=6 中点連結定理の利用 右の図の△ABCで,点D,E,F,Gは それぞれ線分AB, BC, CD, DAの中点である。 12 21 B A+ 29 C 27. d ★ 3 右の図のように, ∠ABC=90° の直角三角形がある。 辺AC上に点Dをとり, 点Bを通り線分BDに垂直な直線上 に∠EDB= ∠CAB となる点Eをとる。 また, 線分EDと辺 ABの交点をFとする。 次の問いに答えよ。 D このとき 四角形DEFGは平行四辺形であることを証明せよ。 B E 4面積比体積比 右の図で, ∠C=90°, AD: DB=3:1である。 点Dから辺ACにひいた垂線をDEとする。 このとき,次の問い 3 □ (1) ADEと四角形 DBCEの面積比を求めよ。 E 9:1 B ★□ (2) △ADE, 四角形 DBCE を辺ACを軸として1回転してできる立体をそれぞれPQとす るとき PとQの体積比を求めよ。 ★ 5 線分の比 右の図の ABCDにおいて, DE: EC=2:1, □F, Gはそれぞれ対角線 AC, 線分AEと対角線BDとの交点 である。 このとき, DG: GF を求めよ。 B' 150 (1) ADBCAFBE であることを証明せよ。 B JC 3cm D 5cm B □(2) AB=6cm, CA = 10cm, ∠DBC = ∠DCB のとき, 線分AFの長さを求めよ。 D 本 4 右の図で、四角形ABCDはAD // BCの台形, Eは辺CDを F D 12に分ける点, Fは辺AD上にあって, BC=FD となる点, Gは線分BDとEFの交点である。 △EDGと四角形ABGF の面積比が27のとき, AF FD を求めよ。 5 右の図で △ABCは, AB=AC=12cm, ∠A=90°の直角 「二等辺三角形, 三角柱ABC-DEFは△ABCを底面とし,高さ が12cmである。 AP=AQ=4cm となるように, 辺AB, AC 上にそれぞれ点P,Qをとり, DR=3cm となるように,辺 AD上に点Rをとる。 点Rを通り, 底面に平行な平面と線分 PE, QF との交点をそれぞれ, S, Tとする。 6つの点A, P, Q,R, S, Tを頂点とする立体の体積を求めよ。 E B 0 G IE 151

回答募集中 回答数: 0
1/29