学年

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置を2回微分すると、加速度になるんですか?

1OROY m m 0 0 9(t) 図1 単調和振動子。 復元力 F はF= ーky(t) であるとする.ここでk>0はバネ定数と呼ばれる与 えられた物理量である. ニュートンの法則(カ=質量× 加速度) を適用すると, ーky(t) =D my" (t) が得られる。ただしy" という記号でyのtに関する 2階導関数を表すものとす る。c= Vk/m とおくと, この2階常微分方程式は g"(t) +c9(t) =D0 となる。方程式(1) の一般解は, a, b を任意定数として 9(t) = a cos ct+bsinct により与えられる。明らかに, この形の関数はすべて方程式 (1) の解になってい る。そしてこの形の解のみがこの微分方程式の 2回微分可能な解になっている。 その証明の概略は練習6で述べる。 上述の y(t) を表す式のなかで, cは与えられた定数であるが, a, bはどのよ うな実数でもかまわない. この方程式の特別な解を決める場合, 二つの未知定数 a, b を考慮に入れた二つの初期条件を課さねばならない. たとえば物体の最初の 位置 y(0) と初期速度 y/'(0) が与えられれば, 物理的な問題の解は一意的となり, y(0) sin ct 9(t) = y(0) cos ct + C により与えられる. 容易にわかることであるが, ある定数 A>0と φERで, a cos ct + bsin ct = Acos (ct - 4) をみたすものが存在する. 上に述べた物理的な解釈に基づいて, A= Va? +6? をこの運動の「振幅」 cを「固有振動数」 (aを「位相| (これは ?Tの整数倍

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

1枚目7.2.3の2段落から式(7.2.25)までの解説がよくわかりません。どなたか教えてください

ーー ^ま ESジンジーレレYバ。 7.2.3 レイリー-ジーンズの式 は無限自由度の調和振動子の集ま りであると解釈できるから (A6節) (7.2.23) 式をそのまま用いて単純に 友, oo とすれば」 真空の比熱は発散してし まう。とすればぱば, 真空は熱浴から無限にエネルギーを得ることになり. 熱平衡状態 は突現し得ない。 もちろん, これは経験事実相容れない. それを認識した上で, あえてエネルギー等分配則が成り立つ場合に予想される幅射スペクトルを求めてみ よう. 1 辺の立方体内の電磁場を考えて周期的境界条件 (periodic boundary com- ition) を課おとにすると 電磁場の波長の整数合がと一致する必要がある こま6 7 をの各成分で成り 立つので, 波数ベクトルを7/(2)合した5 講和 ミたのを十 は無炊元の幣数ペクトル ぁみ となる. したがって, 波数の大きき上がまで の重囲に 合、 対応する整数ベクトア 開にある波数ベクトルの個数は, ヵル/(2r) の場合 ーーードー 0 ポテンシャルエネル "18 格子点上が安定な基準点だとすれば, をこからの変位を qとしたとすき 2人kea (7 20) 式のように 2 数でET のとのBB " 個の原子からなる固体を考える 上 6 としてよい で08計半しBluc 6 6であるが, もちろ

解決済み 回答数: 1
1/2