学年

質問の種類

数学 高校生

p,qに置き換えることをせずに計算したのですが、ここまで解いてaの式に変形するやり方が分かりません💦 どうしたらいいですか?

150 基本 例題88 曲線の接線の長さに関する証明問題 00000 曲線x+y=(a>0) 上の点Pにおける接線がx軸, y軸と交わる点を それぞれA, B とするとき, 線分ABの長さはPの位置に関係なく一定である ことを示せ。 ただし、Pは座標軸上にないものとする。 [類 岐阜大] 基本 83 指針 まず 曲線の対称性に注目 すると (p.178 参照), 点P は第1象限にある,つまり P(s,t) (s>0, t>0) としてよい。 p.145 基本例題 83 (1) と同様にして点Pにおける 接線の方程式を求め, 点 A, B の座標を求める。 線分ABの長さがPの位置に関係な 一定であることを示すには, AB2が定数 (s, tに無関係な式) で表されることを示す。 TRAYA 3√√x² + 3y² = 3√ √ a² (a>0) ① とする。 a 解答 ① は x を -x に, y を -y におき換えても成り立つから, 曲線① はx軸,y軸,原点に関して対称である。 よって, 点Pは第1象限の点としてよいから, P(s, t) (s>0, t>0) とする。 B P 9xs -a 0 a x A ゆるカーの -a また, s = p, t=g(p>0g0) とおく。 ...... (*) x>0, y>0のとき,①の両辺を x について微分すると x=acos30 y=asin³0 (*) 累乗根の形では表記 2 + 33√x 2y' 33√y =0 (ゆえに y'=-31 y Vx よって、点P における接線の方程式は ① が紛れやすくなるので, 文字をおき換えるとよい。 '=(x)=1/2x1 y-t=-3 ± 4 (x−s) S ゆえに y=-(x-p³)+q³ p ② S ② で y=0 とすると x=p+pg: 3 よって 22 = (su+/t)=(v^)=α2 App+g2), 0) x=0 とするとy=pq+g B(0,g(p+g²)) AB2={p(p2+q^)}+{g(p2+q^)}2 2 =(p²+q²)(p²+q²)²=(p²+q²)³ ◄s=p³, t=q³ ◄0=-(x-p³)+q³ 両辺にを掛けて 0-gx+ap+pg° ゆえにx=p+pg2 D したがって, 線分ABの長さはαであり,一定である。 <a>0

未解決 回答数: 0
数学 高校生

数列、数学的帰納法の問題です 写真の、(Ⅱ)の部分の計算式の最後(k>=1 より)がわかりません この式はどこから出てきましたか?

すべての自然数nで 3+13 +2 ...... (*) (*) が成り立つことを. 数学的帰納法で示せ. 精講 数学的帰納法の (II) の部分では, 「n=kのときに成り立つ」という ことを仮定した上で,「n=k+1のときに成り立つ」という結論を 示すという「証明問題」を解くことになります.つまり,数学的帰納法は証明 問題の中で別の証明問題を設定して解いているという, 少し複雑な構造をもっ 複雑な構造 ていることをきちんと理解しましょう. > 解答 (I) n=1のときに(*) が成り立つことを示す。きもで 左辺 =31+1= 9. 右辺 = 3・1+25(水) より, 左辺> 右辺なので,示せた. (II) n=k のとき, (*) が成り立つと仮定する. すなわち 3 +13 +2 ...... ① ・・・・①成り立つとしてよい式 仮定 このとき, (*) で n=k+1とおいた式 3k+2>3(k+1) +2 ...... ② ②示すべき式 結論 が成り立つことを示す. ②の左辺) (② の右辺) =3+2-3(k+1)-2 このままだと =3.3k+1-3(k+1)-2 ここで①の 仮定を使う 計算できない」 >3(3k+2)-3(k+1)-2 ① の仮定を使うと ②が成り立つことが示せた. た。 明できれば、 れば、「-」 (I), (II)より, すべての自然数nで (*) は成り立つ. =6k+1>0 (k≧1 より) 計算ができる形に

未解決 回答数: 0
1/35