学年

質問の種類

数学 高校生

この問題答え見てもよくわかりません

精講 133 計算の工夫 次のデータは5人のハンドボール投げの記録である。 28,α,24,b,c (単位はm)+01+819~ このデータでは、次の4つの性質が成りたっている. (ア) 24 <a<28<b<c (イ) 第3四分位数は33m (ウ) 平均値は 29m (エ) 分散は 14 このとき, a, b, c の値を求めよ. 文字が3つありますので,第3四分位数, 平均値,分散の定義に従 って等式を3つつくり、連立方程式を解けばよいだけですが,数値 が大きいので,計算まちがいが心配です. そこで,平均値がわかっているので,すべてのデータから平均値 29m を引 いた新しいデータを考えることで,計算量を減らす工夫を学びます。 解答 与えられたデータから29m をひいた数を 新しいデータとして考える. すなわち, 小さい順に, -5, a-29, -1, 6-29, c-29 を考える. α'=a-29,b'=b-29, c′'=c-29 とおく . (イ)より, b+c=33 だから,b+c=66 2 : b'+c'=8. ...... (ウ)より,24+α+28+b+c=29・5 ∴a+b+c=29・5-52 よって, a'+B'+c'+29・3=29・5-52 a'+b'+c′=29・2-52 ③) 26-166'+64-40=0 '-86'+12=0 (b'-2)(b'-6)=0 6'2 または 6 6'=2のとき,c=6 B'=6 のとき, c'=2であるが, =44 bc より, B' <c' だから,このときは不適. よって, '=2,'=6 以上のことより, a=27,6=31,c=35 注もし、元のデータのまま解答をつくると、 でき上がる 6+c=66,a+b+c=93, (a-29)2+(6-29)^2+(c-29)²= この時点で, a'=a-29,6'=6-29, c'=c-29 とおきた せん. 演習問題 133 視力検査の数値のように,小数点以下を含むデー 仕方は, 137で学びます. G 次のデータは5人の体重測定の結果である 57,64, a,b,c (単位はkg) このデータに対して、次の4つの性質が (ア) 57 <a<b<64 <c (イ) データの範囲は 10kg (ウ) データの平均値は 62kg (エ) 11.6

回答募集中 回答数: 0
数学 高校生

114の問題では、(表、裏)、(裏、表)とするのに115の問題では(1、2)、(2、1)としないのはなぜですか。115の問題には(左<右)としているのはダブりを防ぐためと書いてありますが、表と裏には大小関係はないですが同時に出すのであれば(表、裏)、(裏、表)もダブりになる... 続きを読む

旋問 第7章 確率 114 同様な確からしさ(I) 2枚のコインを同時に投げるとき、次の問いに答えよ. 6 (1) 2枚とも表になる確率を求めよ. 0 (2) 精講 FACE 2枚のコインを投げるとき, 2枚とも表, 2枚とも裏,1枚が表で 1枚は裏の3通りの場合があります。 したがって, 「だから,表が2枚でる確率は1/23」というのはウソ!! 確率を考 1枚が表で,1枚が裏になる確率を求めよ. えるとき,「全体がN通りで起こる場合の数がn通りだからその確率を NJ 2-50=0 としたければ,N通りの1つ1つの場合が同様に確からしくないといけません。 たとえば,飛行機は「落ちる場合」 と 「落ちない場合」 の2つがあるから, 「飛行機の落ちる確率は1/12 である」とは,どう考えてもおかしいでしょう? 解答 1枚のコインには表と裏の2通りがあるので, 2枚のコインは (表,表), (表,裏) (裏、表) (裏,裏 ) の4つの場合があり,それらは同様に確からしい. (1) 2枚とも表になる確率は 1/1 (2) 1枚が表, 1枚が裏になる確率は ポイント 問題 114 確率 = = 1 2 全体がN通りあり, その1つ1つが同様に確からしい 起こる場合の数 N 3枚のコインを同時に投げたとき 同じ面

回答募集中 回答数: 0
数学 高校生

114の問題では、(表、裏)、(裏、表)とするのに115の問題では(1、2)、(2、1)としないのはなぜですか。115の問題には(左<右)としているのはダブりを防ぐためと書いてありますが、表と裏には大小関係はないですが同時に出すのであれば(表、裏)、(裏、表)もダブりになる... 続きを読む

基礎問 188 第7章 確 率 第 7 章 確率 114 同様な確からしさ(I) 2枚のコインを同時に投げるとき、次の問いに答えよ. 6 (1) 2枚とも表になる確率を求めよ. (2) 1枚が表で,1枚が裏になる確率を求めよ. O JANNE 2枚のコインを投げるとき 2枚とも表, 2枚とも裏,1枚が表で 1枚は裏, の3通りの場合があります。 3 したがって, 「だから,表が2枚でる確率は - 」 というのはウソ!! 確率を考 えるとき,「全体がN通りで,起こる場合の数がn通りだからその確率をN」 としたければ, N 通りの1つ1つの場合が同様に確からしくないといけません。 たとえば, 飛行機は「落ちる場合」 と 「落ちない場合」 の2つがあるから, 「飛行機の落ちる確率はである」とは,どう考えてもおかしいでしょう? 2 |精講 解答 1枚のコインには表と裏の2通りがあるので、 2枚のコインは (表,表), (表裏) (裏、表) (裏,裏) の4つの場合があり, それらは同様に確からしい. (1) 2枚とも表になる確率は (2)1枚が表,1枚が裏になる確率は 12/2=12/2 == 4 ポイント 演習問題 114 全体がN通りあり, その1つ1つが同様に確からしい 確率=起こる場合の数 N 3枚のコインを同時に投げたとき、 同じ面だけがでる確率を求めよ.

回答募集中 回答数: 0
数学 高校生

114の問題では、(表、裏)、(裏、表)とするのに115の問題では(1、2)、(2、1)としないのはなぜですか。115の問題には(左<右)としているのはダブりを防ぐためと書いてありますが、表と裏には大小関係はないですが同時に出すのであれば(表、裏)、(裏、表)もダブりになる... 続きを読む

基礎問 第 7 章 確率 114 同様な確からしさ (I) 2枚のコインを同時に投げるとき、次の問いに答えよ. 6 (1) 2枚とも表になる確率を求めよ. ○ (2) PASA 精講 2枚のコインを投げるとき 2枚とも表,2枚とも裏,1枚が表で 1枚は裏の3通りの場合があります。 したがって, 「だから,表が2枚でる確率は 1/23」というのはウソ!! 確率を考 えるとき,「全体がN通りで,起こる場合の数がn通りだからその確率をN」 としたければ,N通りの1つ1つの場合が同様に確からしくないといけません。 たとえば,飛行機は「落ちる場合」と「落ちない場合」 の2つがあるから, 「飛行機の落ちる確率は1/12 である」とは、どう考えてもおかしいでしょう? 解答 1枚が表で,1枚が裏になる確率を求めよ. 1枚のコインには表と裏の2通りがあるので、 2枚のコインは(表,表),(表,裏) (裏,表)(裏,裏) の4つの場合があり, それらは同様に確からしい. (1) 2枚とも表になる確率は 1/14 (2) 1枚が表, 1枚が裏になる確率は ポイント 演習問題 114 2 4 2 全体がN通りあり, その1つ1つが同様に確からしい →確率=起こる場合の数 N 3枚のコインを同時に投げたとき、 同じ面だけがでる確率を求めよ.

回答募集中 回答数: 0
1/2