学年

質問の種類

数学 高校生

普段から図形は書いた方がいいですかね? こういう系の図がへったくそで時間食っちゃうので書かないんですが、書くコツありますか? この問題ではどんな図になるか教えて欲しいです🙏

3iを単位とし、COS・ +isin とする。 (1) イであり、 3n ウイである。 (2) n = (21) カー1 -1 あり、 (3) コである。 また、 (2n-1)-1, n-1 である。 K+ である。 ギ ケで 2 lafe 25× (25点) 14を自然数とし、関数fn (z) =logx (0) とする。 座標平面上の曲線 =jn (z)上の点(a,∫(q))における接線が、座標平面の原点を通るという。 ただし、 log は自然対数を表し、文中のeは自然対数の底を表す。 回 (1) 接線の傾きは |ア + である。 (2)In-fn(x)dx とすると tge el f (3)領域Dの面積は チ シテ 日 シテ である。また、領域Dをェ軸のまわりに1回転させてできる立体の体積は ヌネ ホ ノハヒ ノハヒ である。 f(x) A (x)'g+x (25点) = -n x™ logx tx="x" -n-t グリッx+x -n-I (-vlx+1) い af() x 必ず!! x=a, 9=an log a 3 f alog ath lay a =ah log a + fa 1 Z 2 1 1 z) (1+z) 1 1-2 1 + 1-z 2 1 1+222 + +2z2 ) (1+z²) 21_5 + = 2 1 + 4+ 2 →ス・ 2 T セ Nor 力 ケコ タ 1₁ = 110 = オ キク サシス である。 n=5とする。このとき, 曲線Cと接線およびェ軸によって囲まれた領域 (境界 を含む)をDとする。

解決済み 回答数: 1
数学 高校生

次の写真でcについて積分定数と言わなくてだ大丈夫なのでしょうか?どなたか解説お願いします🙇‍♂️

例題 235 不定積分〔2〕...∫(ax+b)" dx 次の不定積分を求めよ。 (1) ∫(2x+1)dx 思考のプロセス (2)f(x+1)(x+2)dx (2x+1)(x+1)(x+2) を展開してもよいが, 項が多くなり大変。 |公式の利用 次の公式を用いると, 計算量が少なくなる。 Sax+b)"dx= (1次式)* 1 1 an+1 (ax+b)"+1+C x+1に注目して, (x+1)* をつくる。 (x+1)(x+2) = (x+1)^{(x+1)+1}=(x+1)+(x+1)2 Action》(ax +b)" の積分は, 1 a n+1 -(ax +b)"+1 + C とせよ (2x+1)dx= 1/12 1/2(2x+1)'+C= 1/2(2x+1)^+C 1 (1) ∫(2x 〔別解) (2x+1)dx = (8x3+12x +6x+1)dx ∫(8x + = 2x4+4x°+3x + x + C (2) f (x+1)(x+2)dx = f (x+1)^{(x+1)+1}dx 〔別解) f(x+1) =∫{(x+1)+(x+1)*}dx 1/2(x+1)+1/2 (x+1)^+ 1/2(x+1)+C (x+1)²(x+2)dx = √(x²+2x+1)(x+2)dx = f (x+4x²+5x+2)dx ◆ Point 参照 √(ax+b)" dx 1 1 -(ax + by +1 + C a n+1 例題234のように展開し てから考えてもよい。 (x+1)(x+2) = (x+1)^{(x+1)+1} = = (x+1)+(x + 1) と変形して, 公式を利用 する。 1 4 5 = x4+ + x2+2x+C 4 3 2 Point (ax +b)"の不定積分 nが自然数のとき, {(ax +b)"+1} = a(n+1)(ax+b)" が成り立つから f(ax+b)"dx = 1 1 (ax +b)"+1+C (a = 0) a n+1 この公式は ( 内がxの1次式の場合にのみ利用できる。 ( 内が2次以上 の式の場合は展開してから積分する。

解決済み 回答数: 2
数学 高校生

こういう積分の面積を求める問題の時に赤線の範囲の区切り方がわからないです!誰か教えてください、、!

128 478 = CONNECT 数学ⅡI 2401 12 ■問題の考え方■■ 与えられた連立不等式の表す領域の面積がど のような定積分で求められるか, グラフを図 示して考える。 479 ■問題の考え方■ 2つの接線の方程式を求め, 与えられたそれぞ これの図形の位置関係を図示することで、どの ような定積分を計算すればよいかを考える。 y=x2-4x+3について y'=2x-4 点 (43) における接線の方程式は 3=4(x-4) すなわち y=4x-13 与えられた連立 点 (03) における接線の方程式は 不等式の表す領域 は、 右の図の斜線 3-4(x-0) すなわち y=-4x+3 y=x2-11 5 この2つの接線の交点 部分(境界線を含む) である。 Vy y=x+5 y=-3x+9 の x 座標は, 方程式 3 4x-13=-4x+3 よって, 求める面 積Sは S =(x+5)(x-1)}dx +(3x+9)(x-1)}dx =S'(x'+x+6)dx+f(x_3x+10)dx 3 --++6x+x²+10x] 20 -27 12 -1-1 x を解いて 2 0 4 x=2 図から, 求める面積 S は 10-1 S 2 = ={(x2-4x+3)-(-4x+3)}dx +f(x-4x+3)-(4x-13)}dx 2 =(-1/3+/+6)-(+2-12)} 8 +-1-6+20)-(-1/3/2/2+10)} =Soxdx+$2(x2-8x+16)dx + -4x2+16x 3 50 3 別解領域を、下の図のように分けて考えると S =S_{3_(x-1)}dx -2 +-(2-(-2)-(6-3) (x+2)(x-2)dx (2-(-2)3 50 +6 +6= 6 3 -2 2 X 8 =(2-0)+1-64+64)-(9-16+32 = 16 別解放物線と2つの接線で囲まれた部分は,直 線 x=2に関して対称であるから,その面積は 2∫{(x2-4x+3)-(-4x+3)}dx=2

解決済み 回答数: 1
数学 高校生

数学2についてです なぜ、kやlなどで文字を使って解いているのでしょうか 普通に、ふたつの曲線をイコールで繋ぐだけでいいと思ってしまったのですが、この問題において文字を使って解くメリットはどのようなものがあるのでしょうか 分かる方お願いします

9円/2円の交点を通る直線・円——— 座標平面上の2つの円:y2-2y-3=0 と C2y6y+5=0 は異なる2点で安 わる C と C2 の2つの交点を通る直線の方程式は,y= の2つの交点および点 (1,4) を通る円の中心の座標は x+ である.また,と 半径は [ (流通科学大/一部省略) 2曲線の交点を通る曲線 O3の「定点通過」で現れた考え方は,与えられた2曲線の交点を通る曲 線を作ることに応用できる. 2曲線f(x,y)=0,g(x,y)=0が共有点をもつとき k.f(x, y) +1·g(x,y)=0 (k, lは実数で, (k,1) (0,0)) は2曲線のすべての共有点を通る曲線を表す. なぜなら, 任意の共有点を (α,β) とすると,f(α,β) = 0 かつg (α,B)=0を満たすので k.f(α,B)+1g (α, β)=0が成り立つからである。 例えば,f(x,y)=2x+y+1,g(x,y)=x-2y-1とすれば,f(x,y)=0, g(x, y) =0はともに 直線を表し, Aはこの2直線の交点を通る直線を表す. 2円の場合 円 C:x2+y2+ax+by+c=0 ① 円 D: x2+y2+dx+ey+f=0 が2点P,Qで交わるとき, k (x2+y+ax + by + c) +1(x2+y2+dx+ey+f) = 0 は, P, Qを通る円または直線を表す. (③の左辺が2次式なら円, そうでないなら直線) 特に k = 1, '=-1のときは,P, Q を通る直線を表すが、 要するに, 2円の交点を通る直線は, ①② から得られる. 解答 前半と2の2つの交点を A,Bとすると,A,Bの座標は,+ x²-2x+y2-2y-3=0と+y2-6y+5=0 を同時に満たすから, k(x²-2x+y2-2y-3)+1(x²+ y²-6y+5)=0 も満たす.よって,①は,2円の2交点 A, B を通る図形を表す. [2次の項が消えるように,] k=1, l = -1 とすると,① は, -2x+4y-8=0 1 y= -x+2 これは直線を表すから, 求める直線AB の方程式に他ならない。 (後半) ①が点 (1,4) を通るとき, x= 1, y=4 を代入して 4k-21=0 これを①に代入して,んで割って, 1=2k 2-2x+y2-2y-3+2 (2+y2-6y+5)=0 3x²+3y2-2x-14y+7=0 2 14 7 1 2. x+ -=0 -y+ .. I 3 3 29 1 7 29 中心の座標は 半径は である. 3 3 3 -- = (1+8)+(1+S) 0,0 答 ③ ←2円の式の差を作ると,A,Bを 通る直線の式が得られる. 後半の別解: 2426y+5=0と直線AB 2y+4=0に対してAを用い ると, x+y2-6y+5 --+k(x-2y+4)=0 は,A,Bを通る図形式の形か ら円)を表す. x=1, y=4を代 入して, k=-2/3(以下略)

解決済み 回答数: 1
数学 高校生

(1)も(2)も違うんですが、私の解き方は何が違うのかわかんないです💦

PILO Op PLASTIC 追加 スマートフォン 例題解説動 入の方は追加 ※解説動画は、 年4月までに順 80 重要 例題 44 解と係数の関係と式の値 解のおき換えを利用 | 2次方程式 2x2+4x+3=0の2つの解をα, β とする。 このとき, | (α-1)(-1)=であり,(α-1)+(B-1)=である。 [慶応大 基本4 指針 α+β, αβ で表し,解と係数の関係の利用の方針では、(イ)の計算が大変。 そこで, α-1=y, B1=8 (8は 「デルタ」と読む) (イ)はy*+8 の値を求める問題となる。 ここで ①から α=y+1,β=8+1 ② ① とおくと, (ア)は2 また,α,Bは2x2+4x+3=0 ③の解であるから,②③に代入して整理する ※解説動画は、 2次元コード と 2y2+8y+9=0, 282+88+9=0 すなわちは2次方程式 2x²+8x+9=0 の解である。 α-1=y, β-1=δ とおくと α=y+1,β=8+1 解答 α β は 2x2+4x+3=0の解であるから, y, δは2次方程α, β に対し, α-1,B-1 ①の解である。 式 2(x+1)+4(x+1)+3=0 ・・・ 基本 例題 45 2次方程式ャー めよ。 (1) 1つの解が- 指針 解の公式 係数(定 2つの解 (1) 1つ よっ (2) も同 CHAI 青チャー 日常学習 入試対策 選び抜かれ あり 効率 種々の解訓 学の知識 ① の左辺を展開して整理すると 2x2+8x+9=0 解と係数の関係から y+8=-4, yδ= 9 を解とする2次方程式を 新たに作成する。 そして 作成した方程式に対し、 解と係数の関係を利用す る。 (1) 2つ 解答 解と信 すな (ア) (a-1)(B-1)=y8=1212 (イ) (α-1)*+(B-1)*=y'+8*=(y2+82)2-27282 ■考える力 ={(y+8)^-2r8}'-2 (yô ) 2 例題ページ 針をどの 問題の解 法にたど えること 2x²+4x+3 =2(x-α)(x-β)の両 辺にx=1を代入して 2-12+4.1+3 =2(1-α) (1-β) ゆえ (2)2- 解と すな ①カ ② これから求めてもよい。 した おき換えないで解く =(16-9)-31-17 上の解答のように,Y, δとおき換えず,次のように答えてもよい。 解と係数の関係より、 a+β=-2, aß=1232 であるから ダ どこでも 検討 3 エスビュー 書をタブレッ いつでも, また デジタルなら ゆえに よって (a-1)(B-1)=aß-(a+B)+1=32-(-2)+1= (-1)+(B-1)=a+β-2=-2-2 = -4 (-1)+(B-1)={(a-1)+(B-1)-2(α-1)(B-1)=(-4) -2.1=7 (3-1) = ここでも α-1, β-1を1つのかたまりとして見ることが大切である。 練習 2次方程式 x2-3x+7=0の2つの解を 92 2 POINT 2解 検討 検算 例え ゆえ 解答 練習 (1) ② 45

解決済み 回答数: 1
1/22