学年

質問の種類

数学 高校生

143. この問題のようにθの範囲が書いていない問題は 0≦θ<2πと考えればいいのですか?? 解答があまりどういうことなのかピンとこなかったので自分が学んだ方法で解こうとしたのですが、この方法(写真2枚目)でも解けますか? 解ける場合どう解くか教えてほしいです。

224 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin20+acos0-2a-1=0 を満たす0があるような定 ure 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 ...... 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは, 放物線y=f(x)とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で, x軸と異なる2 点で交わる, または接する。 よって、求める条件は、 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小グラフ利用 D, 軸,f(k) に着目! 1 このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=α(a-8) であるから a(a-8) ≥0 (2 よって a≦0,8≦a a 軸x=1/28 について-1<<1から 2<a<2 ...... a>. IKACION cos0=xとおくと, -1≦x≦1 で, 与式は f(-1)=1+3a > 0 から f(1)=1+a>0 から ②~⑤の共通範囲を求めて <a≦0 ① [2] 放物線 y=f(x) が-1<x<1の範囲で,x軸とただ1点 ---- で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)ƒ(1) <0 1 3 a>-1 1 3 a=- (4) (5) ゆえに (3a+1)(a+1)<0よって-1<a<- a<- 1/13 1 またはa=-1 ① [3] 放物線 y=f(x)がx軸と x = -1 または x=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から [1], [2], [3] を合わせて -1≤a≤0 [参考] [2] と [3] をまとめて,f(-1)(1)≧0としてもよい。 3 [同志社大] ③3③ 練習 0 の方程式 2cos²0+2ksin0+k-5=0を満な ④143 を求め 検討〉 TAHO x2ax+2a=0 をαについ て整理すると x2=a(x-2) よって, 放物線 y=x2 と 直線 y=a(x-2)の共有点のx座 標が-1≦x≦1の範囲にあ る条件を考えてもよい。 解 編 p.139 を参照。 [1] \ YA + 11 D2 (794) [2] YA -1 Do 基本140 -1 YA -1 1 00 + X 大量 <D-[0] X

回答募集中 回答数: 0
数学 高校生

青チャートIIの三角関数の質問です。黄色線の不等式に=を何故つけないんですか?

224 00000 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin²0+acos0-2a-1=0 を満たす0があるような定数aの値の範 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち cos0=xとおくと, -1≦x≦1 で, 与式は x2 - ax+2a = 0 よって、求める条件は, 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って, 考えてみよう。 ...... 2次方程式の解と数kの大小 グラフ利用 D, 軸, f(k) に着目・・・・・ 2014 [同志社大] 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは,放物線y=f(x) とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で,x軸と異なる2 る条件を考えてもよい。 点で交わる, または接する。 標が-1≦x≦1の範囲にあ 編 p.139 を参照。 したか [1] YA このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=a(a−8)であるから よって a(a-8)≥0 a≦0,8≦a a 軸x=12/28 について-1<<1から 2<a<2… a>- 1/13 a>-1 f(-1)=1+3a > 0 から f(1) =1+a>0 から ②~⑤の共通範囲を求めて <a≦0 3 口 [2] 放物線y=f(x) が-1<x<1の範囲でx軸とただ1点 で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1)(a+1)< 0 よって-1<a<- 3 口 [3] 放物線y=f(x)がx軸とx=-1またはx=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から a=- または α=-1 3 基本140 [1], [2], [3] を合わせて -1≤a≤0 参考 [2] と [3] をまとめて, f(-1)f(1) ≦ 0 としてもよい。 検討 x2ax+2a=0をaについ て整理すると x2=a(x-2) |よって, 放物線y=x²と直 y=a(x-2) の共有点 16 0 1+ 1 [2] VA 7 - 0 2 V 100 cos グラー 求める

回答募集中 回答数: 0
数学 高校生

チャート式数学Ⅱ+B、重要例題167番です。 (3)の説明がよくわからないので、お願いします。

250 ・①について 重要 例題 167 対数方程式の解の存在条件 1000 x の方程式{10g2(x2+√2)}^-210gz(x2+√2)+α=0 次の問いに答えよ。 ただし, α は定数とする。 (1) 10g2(x2+√2) のとりうる値の範囲を求めよ。 (2) ① が実数解をもつとき, aの値の範囲を求めよ。 TUTO (3) α (2)で求めた範囲の値をとるとき, ① の実数解の個数を求めよ。 CHAR CHARTO SOLUTION 対数方程式の解の問題 おき換え [102(x2+√2)=t]でtの方程式へ変域に注意 (2) 10gz(x2+√2)=tとおくと, ① から -f2+2t=a gol Tri グラフを利用 } この2次方程式が (1) の範囲内で解をもつ条件を考える (3) x2=0 となるtの値に対して, xの値は1個(x=0) 解答 (1) x2+√2≧√2であるから よって log₂ (x²+√√2)≥ 1/2 (2) 10g2(x2+√2)=tとおくと, ① から+2=a また, (1) の結果から +==/2 y 曲線 y=-f+21 (12/2/2) t≧ (2 と直線y=a・・・ ③ の共有点が存在 するための条件から, α の値の範囲は a ≤1 のについて, x2+√2=2' を 満たすxの個数は t= のとき x=0 の1個, log2(x2+√2)=10g2√2 のとき x2>0 であるから2個 1<a<1のとき 4個 PRACTICE 1670 3 4 /1 a! I 10 1 2 i 1 1 Speed 1 t> よって, ②,③のグラフの共有点から,①の解の個数は a=1のとき 2個;α=2のとき 3個: 1 (3) 2 t 基本 159 10g2√2=1/2 等号はx=0 のとき成立。 24 24887151 des (El -t²+2t =-(t-1)2+1 AFS (X)\M ET 150 = X Y=y.gol ₂X₁₂ 1/12/ a=2のとき, /1/23から から1個 2個の合計3個。

回答募集中 回答数: 0
数学 高校生

最後の注の部分の比例式が成り立つのは何故なのか分からないので、 解説して欲しいです。 よろしくお願いします

9 連立1次方程式 / 連立方程式の解の存在条件 [(a−2)x+4ay=−1 の定数として、次のエリについての連立方程式を考える。ょー (34+1)y=a ] のとき, この連立方程式の解は存在しない. (麗澤大) [] のとき, この連立方程式の解は無数に存在する 等式の条件の扱い方 等式の条件式が1個与えられたら,それを使ってどれか1文字を消去するの が原則的な手法である.x,yの連立1次方程式の場合,例えば一方の式からxをyで表して、他方の式 に代入するとyの1次方程式に帰着できる. xの方程式x=gの解 p=0のときx=2, p=0 かつ g=0のときxは任意, p=0 かつq≠0 のとき解なし Þ 解答 100>A 70 A<[X] @ 1 (a−2)x+4ay=-1 >x> [<]X[** (2) x-(3a+1)y=a 3 であり、 ②により, x=(3a+1)y+a ③を①に代入して, (a−2){(3a+1)y+a}+4ay=−1 .. (3a²-a-2)y=-a²+2a-1 ④ (a-1)(3a+2)y=-(a-1)2 の方程式④の解y に対して, ③ によりxがただ1つ定まり, 連立方程式 ①か つ②の解(x,y) がただ1つ定まる. よって, 連立方程式の解が 「存在しない・無数に存在する」 条件は、④の解が 「存在しない・無数に存在する」ことと同値である. よって, ④ から のとき解なし. 3 (a-1)(3a+2)=0かつ-(α-1)20, つまり α=- (a-1)(3a+2)=0かつ(a-1)2=0, つまり α=1のとき解は無数 . 注連立1次方程式の解の存在条件を座標平面で考える方法もある. |ax+by=e... Ⓒ ((a, b)=(0, 0) lcx+dy=f・イ (c, d)=(0, 0) 一般に, を考えてみよう.xy平面上でアイは直線を表す. アとイが交われば,その交 点の座標が連立方程式の解である. したがって, ●解が存在しないということは,直線アとイが共有点をもたない,つまりアとイ が平行で一致しないことと同値. ●解が無数に存在するということは,直線アとイが一致することと同値. —ということになる. 直線アとイが平行である (一致も含む) ための条件は、 a:b=c:d(← ad-bc=0) a TRAN a= a= 方程式の解が存在する・存在しな いをとらえるには, 実際に求めよ うと考えればよい.y を求めるな ら ④式を導くところ. 0-1,84502121 3012120 T I+=2(1-1) +3021 本問の場合、次のようになる. ①と②が平行 (一致も含む) であ あるための条件は,十 (a−2): 4a=1:{-(3a+1)} (a-2) (3a+1)-4a=0 ∴.3a²-a-2=0 2 a=- 1 XJIK 3' これらのときの ① ② を求め, 致するかどうか調べる (α=1の ときのみ一致する).

回答募集中 回答数: 0
1/2