学年

質問の種類

数学 高校生

[1]はなぜ判別式だけではだめで[2]はなぜ判別式がいらないのですか?

重要 例 148 三角方程式の解の存在条件 La の値の eの方程式 sin'0+acos0-2a-1=0を満たすりがあるような定数。 囲を求めよ。 基本14 → cosa=x とおくと, -1≦x≦1, 与式は 指針 まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 よって、求める条件は, 2次方程式 ①が-1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って, 考えてみよう。 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目 cos0=xとおくと, -1≦xであり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は方程式f(x) = 0 が-1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 晶検討 x2ax+2a=0をにつ いて整理すると nia-S+0=0$ x²=a(x-2) よって、放物線y=xと 直線 y=α(x-2)の共有 点のx座標が -1≦x≦1の範囲にある を考えてもよい。 解 これは,放物線y=f(x) とx軸の共有点について,次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x) が -1<x<1の範囲で, x軸と異な る2点で交わる,または接する。 このための条件は,①の判別式をDとするとD≧O a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 答編 p.147 を参照。 [1]) YA a 答 1) (2 解答 よって a≦0,8≦a ...... ② 軸x=1/3について -1</1/8 <1から -2<a<2… ③ 0 10 -1 1 I f(-1)=1+3a>0から a>. 3 [2] f(1)=1+α>0 から a>-1 ⑤ YA ②~⑤の共通範囲を求めて <a≦o [2] 放物線y=f(x) が-1<x<1の範囲で, x軸とただ 1点で交わり,他の1点はx<-1, 1 <xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1)(a+1) < 0 よって -1<a< 3 [3] 放物線y=f(x) がx軸と x = -1 またはx=1で交わ る。 f(-1)=0 または f(1) = 0 から a=- [1], [2], [3] を合わせて -1≤a≤0 1/23 または α=-1 【参考[2] と [3] をまとめて,f(-1)f(1)≦0 としてもよい。 練習 0 の方程式 2cos20+2ksil 148 -1 0 F A 1 -1 00

解決済み 回答数: 1
数学 高校生

ここで=を含まないのはなぜですか?

重要 例題 148 三角方程式の解の存在条件 0 の方程式 sino+acos0-2a-1=0を満たす 0 があるような定数a 00000 この値の範 基本145 囲を求めよ。 指針 まず 1種類の三角関数で表す →→ cos0=xとおくと, -1≦x≦1 で、与式は 解答 (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0 ① よって、 求める条件は, 2次方程式 ① が -1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小 グラフ利用 D, 軸, f(k)に着目 COS=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a1= 0 すなわち x2-ax+2a=0... ① この左辺 f(x) とすると, 求める条件は方程式 f(x)=0 1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 THE 検討 x2ax+2a=0をαにつ いて整理すると x=a(x-2) (0-200-J)-よって, 放物線y=xと これは, 放物線y=f(x) とx軸の共有点について 次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x)が-1<x<1の範囲で, x軸と異な る2点で交わる, または接する。 このための条件は、 ① の判別式をDとすると D≧0 a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 直線y=a(x-2) の共有 点のx座標が -1≦x≦1の範囲にある 条件を考えてもよい。 解 答編 p.147 を参照。 [1]\ YA よって a≤0, 8≤a ...... 中 <a 軸x=1/2について 1</12 <1から -2<a<2… ③ + 20 1 f(-1)=1+3a>0から a> - 11/13 ④ 3 f(1)=1+α>0 から α>-1 [2] y4 1 ②~⑤の共通範囲を求めて <a≤0 3 + -1 [2] 放物線y=f(x) が-1<x<1の範囲で,x軸とただ 1 1点で交わり,他の1点はx <-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1) (a+1) <0 よって 1 -1<a<- [3] 放物線y=f(x) がx軸とx=-1またはx=1で交わ [=(0) 3 る。 f(-1) = 0 または f(1) = 0 から a=- 1 または α=-1 3 [1] [2] [3] を合わせて -1≤a≤0 ya 00: 1. 100 [参考] [2] [3] をまとめて,f(-1)f(1) ≧0としてもよい。 練習 0 の方程式 2cos20+2ksin0+k-5=0を満たすのがあるような定数々の値の ④ 148 囲を求めよ。

未解決 回答数: 0
数学 高校生

この問題って右下にあるように定数分離を使っても解けると思うのですが模範解答の解き方も覚えないといけないですか? 定数分離の方が自分的にやりやすいのでもし覚えなくて良かったらその方法だけでやりたいです。

4 第4章 三角関数 Think 10/17x **** 例題 152 三角関数を含む方程式の解の存在条件 OOT とする. 0 の方程式 cos20+asin0+a=0・・・・・・① を満たす 0 が存在するための定数αの値の範囲を求めよ. ( 岩手大・改 ) [考え方 sing とおくと、2倍角の公式を利用して、1の2次方程式として考えることがで きる。 (0) f(1) が同符号のとき f(t) のの係数が正より 区間 ②で③が実数解をもつための条 件は, f(0)>0 かつ f(1)>0 かつ f(t)=0 の判別式をDとすると. D≧0 かつ y=f(t)の軸が区間内 つまり、tの2次方程式の解の存在範囲の問題となるので 2次関数のグラフと軸の である. 共有点を考えるとよい. f(0)=a-1>0より, 解答 a 3 三角関数の加法定理 295 f(0) <0. f(1) < 0 の場合は区間内に解 をもたない。 17 0 a>1 ...... ④ f(1)=2a+1>0より 1 a> 2 8 t D=α-8a +820 より a≦4-2√/24+2/2≦a .......⑥ a-8a +8=0. 4=4+2/2 のとり得る値の範囲に注意しながら、 実数解 tの存在範囲を調べればよいが,そのと 上のようにいろいろな場合が考えられ、場合分けの必要がある場合分けをする ときの着眼ポイントは、「区間の端点の符号」,「軸と区間の位置関係」 「判別式(また は2次関数のグラフの頂点のy座標)」 である. t = sin0 とおくと,00πより 0≦t≦1 .....・・ ② cos20=1-2sin'0=1-2F より ①に代入して, -(1-2f2) + at + α = 0 つまり、 2f+ at+a-1=0 ...... ③ したがって、 ①を満たす 0 が存在するための条件は,区 間②において,tの2次方程式③が少なくとも1つの実数解 をもつこと, つまり ③より f(t)=21+atta-lとお とy=f(t)のグラフが区間②でも軸と少なくとも1つ の共有点をもつことである. (i) (0) (1) が異符号のとき つまり,f(0)f(1) <0 のとき f(0)=a-1 f(1)=2+a+a-1=2a +1 したがって, (a-1)(2a+1)<0 よって、12<a<1 -4<a<0 ......⑦ 軸はto より <<1 4 つまり. 以上(i)~(i)より,求めるa の値の範囲は したがって、④~⑦を同時に満たすαの値は存在しない。 ≦a≦1 Focus 最終的に2次関数の 解の存在範囲における場合分け 48 する。 問題として捉えるこ とができるかがポイ ント 区間の端点の符号で 場合分けを考える. (注)を参照) f(0)>0,f(1)<0 または, f(0) <0. f(1)>0 より 1 t f(0) f(1)<0 f(0)=0 のとき, す でに f=0 が③の解 となるのでf(1) の符 よって a= =1/12 または a=1 号は関係ない. () f(0)=0 または f(1) = 0 のとき つまり,f(0)f(1)=0 のとき (a-1)(2a+1)=0 f(t) =2f+ at+a-l =21++ 第4章 「区間の端点の符号」 「軸と区間の位置関係」 「判別式(または2次 関数のグラフの頂点のy座標)」に着目せよ! 注〉 例題152で 「区間の端点の符号」で場合分けを行ったのは, (i) や (i) の場合は端点の符 号を調べれば,軸や判別式を調べなくても、題意を満たす αの値の範囲を調べること ができるからである. このことは, Focus Gold 数学Ⅰ+Aの第2章 「2次関数」 で学んだ 「解の存在範囲」 の問題と関連している. 注) 「定数分離」という着眼から, 例題152を次のように解くこともできる. 2t2+ at+a-1=0 より 2t-1=-at-a g(t)=2t-1.h(t)=-at-a とすると, ③を満たす が区間②内に存在するのは, y=g(t) と y=h(t) が区 間②において共有点をもつ場合である.このとき, h(t)=-a(t+1) より,y=h(t)は定点(-1, 0) を通 る直線であるから, 右の図より、共有点をもつのは, -15-as y=g(t) 1 =h(t) (0, -1) を通る直線から, より、 1/2sas1のときである。 (1,1) を通る直線まで変化する. 練習 152 とする0の方程式 sin' +acos0-2a-1=0………① を満たす 0 (同志社大 改)

解決済み 回答数: 2
数学 高校生

(イ)の解説の最後から2行目についてです。なんで−2の時、イコールが含まれるのかわからないです

10 1次不等式/解の存在条件, 整数解の個数- k0 を実数とするとき、 2つの不等式|2x-3|<2, kx-5|<kを同時に満たす実数ェが存 在するようなkの値の範囲は,k> である. (東京経大 ) (イ)不等式を満たす整数の個数は[ である. 正の数αに対して, 不等式 <αを満たす整数ェの個数が4であるとき, αのとりうる値の範囲は [ ]である. (京都産大・理, 工, コンピュータ理工(推薦)) 不等式の解の存在条件 a<x<bを満たすェが存在する条件は a <bである. また, a<b かつc<dのとき, a<x<bかつc<x<d を満たすェが存在する条件は,a <d かつc <bである. 数直線を活用する (イ)のような問題では,数直線を 書いて考えると明快である. 答えの範囲で端点が入るかど a<dだけだとダメ a<d かつc<bならOK うか (範囲がくかか)を間違えやすいので,十分注意を払おう. ■解答■ (ア) 2x-3|<2のとき, -2<2-3<2 .. a bc a b も ① |kz-5|<kのとき, -k <kx-5<k.k>0により, -1++ -5 5 ...2 k>から<1 5 -<1+ に注意すると, ①と②を同時に満たすェが存在する条件は, ② ① 5 5 57 -1+ .. k k 7 .. k>10 ( k>0) エ (イ)のと のとき、早くよ 18 2 18 よって, -2.2<x<2.8・・・ であるから,これを満たす整数ェは, 5 14/OK -1+ダメ 2 であるから、下図により, 4つの 2,1,0,1,2の5個)-1012→3 整数が-1, 0, 1,2と決まってし 2 <aのとき, -a<ェー - <a .. -a+² <x<a+ 2 7 7 まう. ....... ③ 16 くよく 20 7 7 ③ ほに関して対称な範囲 これを満たす整数ェの個数が4個のとき, そのェは,r=-1, 0, 1,2 であるから、2 かつ 2<a+/-/3 +1/2-1 <as 16 * 120 19 12 <a≤ .. <as⋅ 7 7 7 16 7 + ← -2-1 0 1 2 3 これが1だと解にェニー1が入ら なくなり不適 10 演習題 (解答は p.26) (ア) 2つの不等式|a|≦2a+3 ① | x-2a|>4a-4……………② について, (1) 不等式①を満たす実数ェが存在するような定数αの範囲を求めよ. (2) 不等式①と②を同時に満たす実数ェが存在するような定数αの範囲を求めよ. ( 鳴門教育大 ) (イ)ェについての連立不等式 Jax <3a (a-3) |(a-3)x≥a(a-3) 整数がちょうど3個となる整数αの値を求めよ. がある. この連立不等式を満たす (イ) 区間の端点が整数 ( 鳴門教育大 ) になることに着目。 19

解決済み 回答数: 1
1/5