学年

質問の種類

物理 大学生・専門学校生・社会人

(1)〜(4)の解き方って合っていますでしょうか。また、(5)の問題が分からなかったので教えていただきたいです🙇左が問題、右が解いたものです。

問4 軽いバネの片端を壁に固定し、 他端に質量mの物体をつけて粗い床面に置いた、水平パネ振り子を考 える。 バネが自然長の時の物体の位置を=0とし、 バネが伸びる向きに軸正をとる。 物体は床面から速度 と逆向きの抵抗力-bu を受ける (6は比例定数)。時刻 t = 0 に、 原点にある物体に正の初速度 vo を与える と、バネ定数にがん=だったため、このパネ振り子は臨界減衰振動をした。 この時、任意の時刻 t におけ る物体の位置(t) は右下のグラフのようになり、y=を用いて以下の式で表せる。 (t)=votent 以下の間に、mo, のうち、 必要な記号を用いて答えよ。 (自然対数の底eは数字なので、当然使用可。) (1) 最初に物体の速さが0となる時刻 to を求めよ。 (2) 時刻 to の物体の位置 z (to) を求めよ。 (3) 時刻 to までにバネが物体にする仕事 W を求めよ。 (4) 時刻 to までに床からの抵抗力が物体にする仕事 Wa を、 (3) の結果を用いて求めよ。 (5) 【チャレンジ問題】 前問で求めたW を、 以下の積分を実行することで導け。 rx(to) = to) (-kv)dz = Wa= ・to sto (-kv)dr = √ (-bv) vdt = √ (-bv²) dt 位置 時刻

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全部分かりません!ちんぷんかんぷんです!💦

2/2 物理学入門 演習問題 第6回 1. (a) 減衰振動の運動方程式 d²x dx m +ym dt2 dt -at の解がx(t) = Ae™“ cos (at + 8 ) となるためには、α, y, w。 のどのような関数になら -+kx=0 なければならないか示せ。ただし、ω=√k/m はばねの振動数である。 (b) 初期条件x(0)=x,0(0) = v を満たすような解はどのようになるか示せ。その際は x(t) = Aeat cos (wt+8) = Ae-at (cos wt cosdsin wt sin δ) となることを用いて、 A,8 を消去せよ。 (c) 減衰振動の場合、ばねのエネルギー=mu²+=kx2は「常に」単調減少すること をニュートンの方程式から直接示せ。 2 2. 下図のように2つの粒子が3つのバネにつながっている場合を考える。粒子は1次 元の空間しか動かないものとし、それぞれの粒子の平衡位置 (自然長)からのずれを X1X2 とすると、全体のバネの位置エネルギーは V(x1,x2)===kx²+/=/k'(x_-x2)+=kx2 2 と書ける。ここでk, k'はバネ係数である。 粒子 1,2の質量は等しくmとする。 (b) 重心座標xG (a) 粒子 1,2 それぞれの運動方程式を書き下せ。 x₁ + x₂ 2 (c) 重心座標と相対座標に関する運動の、それぞれの周期を求めよ。 = -と相対座標x=x-x2 に対する運動方程式を書き下せ。 Free free 00000 X2 elllllllll X1 IC

未解決 回答数: 0
1/2