学年

質問の種類

数学 中学生

答えを紛失してしまったので答え合わせをして欲しいです。

単元テスト ① (1) 3,2 (2)-2,-3,-0.5,4 ②(1)+6 (2)一号 ③ (1) ーヶ人多い (1)(-8)×7=-56 (2)(72)÷(-8)=9 (3)0÷(-3)=0 1 用語の意味がわかっていますか。 8 正の数・負の数の乗法や除法ができますか。 下の数について, 次の問いに答えなさい。 次の計算をしなさい。 -2. 3. 2. 0, -0.5, -4 (1) (-8) x 7 (2) (-72)÷(-8) 5' -1198 (1) 上の数のうち, 自然数をすべて書きなさい。 (2) 上の数のうち, 負の数をすべて書きなさい。 (3) 0÷(-3) (4) (-2)×6׳ (6) (2)―4で高い (3)-10分後前 (4)300m北 ④ (1) 4.8 (2)1.2 ⑤ (1)-2,3-0.6 (2)-3-1.4.0.1,05 ⑥ (1)(-7)-(-4)=-7+4 =-3 (2)(-26)+(-17)=-43 (3) -0.8+1.5=0.3 (4)/-(+3)=1/2-1/3 =- (7)-7-12+3=3-7-12 =-16 (2)-8-(+15)+(-7)=-8+15-7 (4)(号)×6=-4 (5)=1/ (6)(一部)=1/ ⑨(1)(-2)×(-3)×(-4)=-24 (2)(-100)÷5×(-4)=80 (3)(-24)÷(-4)÷(-3)=-2 (4)-42÷(-2)3=16÷(-8) =-2 (10 (1) 9+3×(-4)=9+(-12) (2)(-3)2×4+48÷(-8)=36+(-6) =-5 (3)3-14-12-5)×63=3-{4+3×6} =3-22 =-19 (4)3(一)÷2=番一話 =-= (5)(一号+3/3)×(-30)=(-1+1)×(-30) =1/5×(-30) =0 (3) 17-(-8)-9+23=17+8-9+23 =-2 =16 四(1)①③ 二 (2)①②③ 12 (12×311 (2) 1379,5 333 1×5 2 正の符号, 負の符号をつけて、 数を表すことができますか。 次の数を、正の符号 負の符号をつけて表しなさい。 (1) 0より6大きい数 2×4 102 9 3数以上の乗法や除法ができますか。 次の計算をしなさい。 (20より 言小さい数 3 正の数・負の数を使って, 量を表すことができますか。 〔〕内のことばを使って, 次のことを表しなさい。 [10] (1)5人少ない 〔多い〕 (2) 4℃低い 〔高い] (1) (-2) x (-3) x (-4) (2) (-100) ÷ 5x (-4)=20x-4 (3) (-24)(-4)+(-3) (4)-4 ÷ (-2)³ -(2×3×4 正の数・負の数の四則をふくむ式の計算ができますか。 次の計算をしなさい。 +(10÷12) (1) 9 +3× (-4) (2) (-3)" × 4 + 48 ÷ ( 8 ) (3) 10 分後 〔前〕 (4)300m南 〔北〕 12× 12 絶対値の意味がわかっていますか。 14 次の問いに答えなさい。 (1) 4.8の絶対値を書きなさい。 (2) 絶対値が3より小さい整数をすべて書きなさい。 4-(-3) 11 14 48. (3) 3-(4-(2-5) x 6} (4) (5) (-1/+1/2)×(-30) 1/1-30)1+1 数の集合と四則計算の関わりがわかっていますか。 下の①~④の計算の中から、 次の条件にあうものをす 4+3×6 42 5 正の数・負の数の大小関係がわかっていますか。 次の問いに答えなさい。 べて選び 記号で答えなさい。 ①O+□ ② ○ - □ ③ ○ × O÷□ 39 (1) 2.3との大小関係を不等号を使って表しなさい。 (1)○. 口がともに自然数であるとき、答えがいつでも自然 数になるもの (2) 下の数を,小さい方から順に並べなさい。 (2)○. 口がともに0を除く整数であるとき. 答えがいつて も整数になるもの 6 ww -1.4, 1.0.3.0.5 正の数・負の数の加法や減法ができますか。 次の計算をしなさい。 12 素数や素因数分解がわかっていますか。 次の問いに答えなさい。 (1) (-7)-(-4) (2) (-26)+(-17) 26 =-(7-4) =+(0.8+1,5) 6 + (7-12+3) 一番+ (3) (0.8)+1.5) 3数以上の加法や減法ができますか。 次の計算をしなさい。 (1) -7 - 12 + 3 (2) -8 (-15) + (-7) (3)17(-8) 19 +23 (4) (1)/ (+1) 21198 (3)99 + 3133 224 A B E F +5 -9 +11 +8 79 71 79-71+74+83+85+82 74 83 85 82 (1) 198を素因数分解しなさい。 (2) 108 にできるだけ小さい自然数をかけてある自然数の 2乗にするには、どんな数をかければよいですか。 正の数・負の数を使って、問題が解決できますか。 下の表は, A. B, C, D. E. F の6人のテストの点 数からCの点数をひいた値を表したものです。 Cの点数が 74点であるとき、この6人の平均点を求めなさい。 24 C D

解決済み 回答数: 1
数学 中学生

このようになる理由を教えてください

第4章 多項式 第1 数と式 正の数・負の数 文字と式 式の計算 多項式 整数の性質 (3)(x+2y) (x-2y) (4)(9a+4b) (9a-4b) (5)(a+b)(a-b) (6)(x+¾¾y) (²x−¾¾y) 9 3+)- .00 (x+6y) (x-2y) (x+2y)²=x *** (6) 2x²-4y² = (x)² - (¾³)² =(x+1)(x-4) 55 (1)2(x+6)(x-4) (2)x(y+5x) (y-5x) (3)3(x-2y) (4) 3a (x-y) (x-2y) (5)ab (a+8) (a-2) (6) 3xy (x+2y) (x-y) 解き方 (3)32-12xy+12y2 =3(x²-4xy+4y²) =3(x²-2x2yxx+(2y) 2}=3(x-2y)² (6) 3x³y+3x²y²-6xy³=3xy (x²+xy-2y²) 57 (1)(b-3) (a+1) (2)(2x-y+8z) (2x-y-8z) (3)(3x+1)(3x-1) (2y+1) (2y-1) (4)(x+y) (x-y+3) 解き方 (2)xyの項があるから,x, yの組 との頃に分けて考える。 4x²-4xy+y2-64z² = (2x-y)² -64z² 2x-y=Aとおくと, A² - (82)²= (A+82) (A-8z) =(2x-y+8z) (2x-y-8z) (3)xについて整理すると, 36x2 y2-9x²-4y²+1 =9x2 (4y-1)-(4y²-1) 4y2-1=Aとおくと, 9x2A-A=A(9x²-1) =(4y²-1) (9x²-1) (ビーエ - (ds) (d+c)= =3xy (x+2y) (x-y) (8) 0001 56 (1)(x+1)(x-2) COSS(A) (2)(5a-12) (-a+2) P8( 008 (3)(x²-2x-6) (x-1)² (11+8)= (4)(x+6y) (x-2y) (x+2y)²= 18 (S 解き方 (2)2a-5=A, 3a-7=Bとおくと, A2-B²= (A+B) (A-B)(0) = ={(2a-5)+(3a-7)}{(2a-5)-(3a-7)} =(5a-12) (-a+2) (3)(x²-2x)2-5x²+10x-6 00081= = (x²-2x)2-5 (x²-2x)-620X28E 2x=Aとおくと, A2-5A-6=(A-6)(A+1) = (x²-2x-6) (x²-2x+1) = (x²-2x-6) (x-1)² (4)x+4xy=A& +A-1= 42-8A2-48y=(A-12y²) (A+4y²) (x²+4xy-12y) (x²+4xy+4y²) = (4)(x+1)²+x+y-(y-1)² (2y-1) =(x+1)2- (y-1)²+x+y x+1=A,y-l=Bとおくと, A²-B²+x+y=(A+B) (A-B) +x+y =(x+1+y− 1)(x+1−y+1)+x+y = (x+y) (x−y+2)+(x+y) x+y=Cとおくと, C(x-y+2)+C=C(x-y+2+1) =(x+y) (x−y+3) 58 (1)(x-2)(x+y+4) (2)(x+y) (x-y) (x+2) (3)(a+b) (a-b) (a²+b²-c) (4)(x+1)(x+2y) (x+3y) 解き方 (1) の次数が1次でxより低いか ら,yについて整理すると, x²+xy+2x-2y-8 =y(x-2)+x+2x-81x10x= 17

解決済み 回答数: 1
数学 高校生

z=x+yiと表せる理由が知りたいです🙇‍♂️また、なぜx、yは実数じゃないとダメなんですか?

-2i 事項■ 基本 例題 37 2乗して6になる複素数 2 乗すると6i になるような複素数 z を求めよ。 指針 1 z=x+yi (x, y は実数) とする。 ② 226 すなわち (x+yi) = 6iの左辺を展開し, iについて整理する。 ①①①① 基本 35,36 69 ③ 前ページと同じように,次の 複素数の相等条件を利用してx, yの値を求める。 a+bi=c+di⇔ a=c, b=d (a, b,c,dは実数) CHART えのある計算=-1に気をつけて, iについて整理 z=x+yi (x,y は実数) とすると 22=(x+yi)2=x2+2xyi+yziz =x2-y2+2xyi 2章 をきちんと書く。 7 <i=-1 z2=6iのとき x²-y²+2xyi=6i-&-2445P-648287 x,yは実数であるから, x2 -y2と2xyも実数である。 Jei 複素数 c+di が等しい (別解刻 解答 したがって x²-y²=0 ...... ①, 2xy=6 ② 実部, 虚部がそれぞれ等し 重要 ①から 『="-)= (x+y)(x-y)=0 -1) よって y=±x ③コリー [1] y=x のとき,②から x²=3(1)=-= x+y=0またはx-y= 0 == (S) すなわち x=±√3-1-i= y=xであるから x=√3のとき y=√3, 2 =3 [2] y=-x のとき,②から x=-√3のときy=-√3 x2=-3 (複号同順)を用いて,次の ように書いてもよい。 x=±√3,y=±√3 (複号同順) これを満たす実数xは存在しない。 または 以上から 2=√3+ √3i, −√3-√3i 注意②で,xy=3>0であるから, xとyは同符号であ る。ゆえに、③において y=-xとなることはない。 (x,y)=±√3+√3) (複号同順) HA 虚数では大小関係や、正負は考えない 虚数にも, 実数と同じような大小関係があると仮定し, 例えば, i>0 とする。 検討 この両辺にżを掛けると, ixi>0xi すなわち > 0 となるが,実際にはi=-1であるか ら,これは矛盾である。 一方, i < 0 としても同じように, i>0 となって矛盾が生じる。 更にi≠0であることは明らかである。 よって, iを正の数, 0, 負の数のいずれかに分類することはできない。 したがって, 正の数, 負の数というときには, 数は実数を意味する。 また、特に断りがない場合でも、設問で 2α+1>36-2のような不等式が与えられたら, 文 字 α 6 は実数であると考えてよい。 と書くこともある。」

解決済み 回答数: 1
1/37