学年

質問の種類

数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
数学 高校生

統計的な推測 Zは近似的にN(0,1)に従うと書いてある場合と普通に ZはN(0,1)に従うと書いてある場合があります。 この二つをどう使い分ければいいのか教えてください。

基本例 例題 母平均 0. 88 大数の法則 - 555 00000 母標準偏差をもつ母集団から抽出した大きさんの標本の標本平均 ýが0.1以上0.1以下である確率 P(|X|≦0.1) を, n=100, 400, 900 の各場 合について求めよ。 指針 ・基本 80, p.549 基本事項 m=00=1であるから、標本平均又は近似的に正規分布 N (0, 1/2)に従う。 n=100, 400, 900 の各場合について, 正規分布 N(m,d')はZ=X-mでN(0, 1)へ[標準化] に従い, 確率 P (|X| ≦ 0.1) を求める。 O n=100,400,900 は十分大きいと考えられる。 解答 n=100 のとき,X は近似的に正規分布 N(0, 100) に X 従うから,Z= 1 10 とおくと, Zは近似的にN(0,1) に従う。 よって P(|X|≦0.1)=P(|Z|≦1)=2p(1) =2.0.3413 =0.6826 P(X|≦0.1) =P(0.1) =P(|Z|≦1) n=400 のとき,Xは近似的に正規分布 N0, に 400 X 1 20 従うから, Z= とおくと, Zは近似的にN(0, 1) に従う。 よって P(|X|≦0.1)=P(|Z|≦2)=2p(2) 2章 母集団と標本 ①~③ から, nが大きくな るにつれて =2•0.4772 =0.9544 n=900 のとき,X は近似的に正規分布 N(0, 900 1 に 検討 ☑ 従うから, Z=- とおくと, Zは近似的に N(0, 1) 78.0 30 に従う。 よって P(|X|≦0.1)=P(|Z|≦3)=2p(3) =2.0.49865 =0.9973 ③ P(X|≦0.1) が1に近づくこと,すなわ 大数の法則が成り立つ (標本平均 Xが母平均 0 に 近い値をとる確率が1に近 づく)ことがわかる。 練習 さいころを回投げるとき、1の目が出る相対度数を R とする。n=500, 2000, 88 4500の各場合について, PR--//sono) の値を求めよ。

解決済み 回答数: 1
1/27