学年

質問の種類

数学 高校生

この問題でBの家とCの家に帽子を忘れるときに3/4をかけるのは何故ですか。教えてください。

242 第5章確率 練習問題 11 あるセールスマンは, 家を訪問すると の確率で帽子を忘れてくる. 4 このセールスマンが帽子をかぶって出かけ,A,B,Cの3つの家をこの 順に訪問して帰ってきたところ、帽子を3つの家のどこかに忘れてきたこ とに気がついた.この人がAの家に帽子を忘れた確率を求めよ. 精講 事後の確率の有名問題です。単に「Aの家に帽子を忘れてきた」確 率であれば, です.しかし,このセールスマンが「どこかに帽 4 子を置き忘れてきた」という情報を知ってしまったことにより,その確率は変 わってきます.ここでも、面積図の考え方がとても有効です. セールスマンが Aの家に帽子を忘れる確率は 1 4 解答 Bの家に帽子を忘れる確率は 31 3 -X-= 44 16 Cの家に帽子を忘れる確率は 3 3 1 9 x-x A どこかで帽子を忘れる Aで忘れる 1 ① Cで忘れる 忘94 64 4 4 4 64 3 忘れない これを面積図にまとめると, 右図のよう になる. 「どこかに帽子を忘れてきた」という条 件のもとで「Aの家に帽子を忘れてきた」 確率は,図の「青枠」 の中に占める 「水色 の網かけ部分」の面積比である. よって、求める確率は 1 4 1 + 4 316 9 + 16 16 16+12+9 37 64 13 Bで忘れる 31 |1| (3

未解決 回答数: 1
数学 大学生・専門学校生・社会人

やさしい理系数学例題3(2)整数分野の証明問題です。 模範解答の意味は理解できますが、16で割ったあまりで分類しようと考えるに至る過程がわかりません。

あり、その最大数はab である。 この定理について興味のある方は, 「ハイレベル理系数学」の例題3と演習問題 14 を参照されたい. 例題 3 正の整数a,b,cが a+b2=c2 をみたすとき,次の (1), (2), (3) を証明せよ . (1) a, b のいずれかは3の倍数である. (2) a,b のいずれかは4の倍数である. (3) a,b,cのいずれかは5の倍数である. 考え方 任意の整数は, 3m, 3m±1 (mは整数) などの形で表せる. 【解答】 (1) 任意の整数は3m,3m±1 (m∈Z) のいずれかの形で表せ, (3m)2 = 0, (mod3) (3m±1)²=1. よって, a, b がともに3の倍数でないとすると, ∫(a2+62)÷3の余りは,2 lc²÷3の余りは, 0,1 であるから, a2+b2=c2 となり矛盾. ゆえに,d2+b2=c2 のとき, a, 6 のいずれかは3の倍数である. (2) 任意の整数は 4m, 4m±1,4m+2 (mez) のいずれかの形で表せ , (4m)²=8.2m² = 0, (4m±1)²=8(2m²±m)+1=1,9, (mod16) (4m+2)^2=8(2m²+2m)+4=4. よって, a, b がともに4の倍数でないとすると, 背理 (a²+62)÷16の余りは, 2, 5, 8, 10, 13 lc²16の余りは, 0, 1,4,9 (5m)2 =0, (5m±1)' = 1, (mod5) (有名問題 ) (5m±2)²=4. よって, a,b,cがすべて5の倍数でないとすると, (終) なぜood 16 で分類しょうと 考える 光に平方数で割った余りを であるから, a+b2=c2 となり矛盾. ゆえに,a+b=²のとき, a,b のいずれかは4の倍数である. (3) 任意の整数は 5m,5m±1.5m±2(m∈Z) のいずれかの形で表せ, (終)

未解決 回答数: 1
1/2