学年

質問の種類

経営経済学 大学生・専門学校生・社会人

問題114〜132の所をどうやって計算するのかわかりません。わかる所だけでいいのでよろしくお願いします🙏

ある。 114. 消費関数がC=50+0.8(Y-T) であるとしよう。 この消費関数で 「0.8」 となっている係数のこ とを、 限界消費性向という。この場合、市場利子率を一定と仮定すると、政府が5兆円の 減税をすることで、GDPは 20兆円 だけ増加する。 115. 消費関数がC=50+0.8(Y-T)であるとしよう。 この消費関数で 「50」 となっている項のことを、 基礎消費 という。 また、 市場利子率が一定と仮定したとき、 政府が財政支出を 10 兆円増 加すると、GDPは50兆円だけ増加する。 116. 消費関数がC=50 +0.8(Y-T)であるとしよう。 この場合、 市場利子率を一定と仮定すると、 輸 出が10兆円増加することで、 GDPは 50兆円 だけ増加する。 117. 今、 限界消費性向が 0.8 であるとしよう。 市場利子率が一定と仮定すれば、 民間企業の設備投資 が3兆円増加することで、 GDPは 15兆円 だけ増加する。 また、 輸出が10兆円増加す ることで、 GDP は 50兆円 だけ増加する。 118. 今、 限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、財政支出が5兆円増 加することで、 GDPは 20兆円だけ増加する。 119. 限界消費性向が 0.65 としよう。 市場利子率が一定と仮定すれば、 輸出額の増加 10兆円によって、 GDPは 兆円だけ増加する。 28.6 120. 限界消費性向が 0.6であるとしよう。 市場利子率が一定と仮定すれば、 3兆円の減税が行われるこ とで、GDPは 4.5兆円 だけ増加する。 また、 投資額が5兆円増加すると、 GDPは 12.5兆円 だけ増加する。 121. 限界消費性向が 0.7であるとしよう。 市場利子率が一定と仮定すれば、 5兆円の減税が行われるこ とで、GDPは 11.7兆円 (小数点以下何桁でも可、分数でも可) また、 輸出が1兆円増加すると、 GDPは 3.3兆円 (小数点以下何桁でも可、 分数でも可) 122. 消費関数 C=c+c, (Y-T)の係数c を基礎消費とよび、係数を だけ増加する。 だけ増加する。 限界消費性向 とよぶ。 6 もし、市場利子率が一定だとして、 q=0.6のとき、政府の財政支出増加 (AG=3兆円)によって、 GDPは 7.5兆円 だけ増加する。 また、もしc = 0.75 ならば、 減税 (AT-2兆円)にともなって、 GDP は 6兆円 だけ増加する。 このように、 財政支出増加額や減税額以上にGDPが増加することを 乗数 |効果という。 123. 今、 限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、 輸出が2兆円増加することで、 GDPは 8兆円 だけ増加する。 また、3兆円の減税が行われることで、 GDPは 9兆円 このように、 輸出額や減税額以上にGDPが増加することを だけ増加する。 乗数効果 という。 124. ケインズ型消費関数 C=co +c, (Y-T)を考える。 市場利子率が一定ならば、 c = 0.75 のとき、政府の財政支出増加 (AG=4兆円)によって、 GDPは 16兆円 だけ増加する。 また、 c = 0.8 ならば、 減税 (AT=-1兆円)にともなって、 GDPは 4兆円 だけ増加する。 125. 限界消費性向が 0.8 としよう。 市場利子率が一定と仮定すれば、 輸出額の増加 10兆円によって、 GDPは 50兆円 」だけ増加する。 126. 限界消費性向が 0.8 であるとしよう。 市場利子率が一定と仮定すれば、7兆円の減税が行われる ことで、 GDPは 28兆円 だけ増加する。 127. 今、 限界消費性向が 0.65 であるとしよう。 市場利子率が一定と仮定すれば、 20兆円の減税をす ることで、GDPは 37兆円だけ増加する。 128. 限界消費性向が 0.85 であったとしよう。 今、 家計の可処分所得が新たに8億円増加すると、とり あえず家計は消費を 6.8 億円増やし、貯蓄を 1.2億円増やす。さらに経済循環が無限に 続く結果、 GDPは 45.3億円増加する。 129. 今、 限界消費性向が0.9 であるとしよう。 市場利子率が一定と仮定すれば、 投資が 10兆円増加す ることで、GDPは100兆円だけ増加する。 また、10兆円の減税によりGDPは 90兆円だ け増加する。 130. 限界消費性向が 0.6 であるとしよう。 市場利子率が一定と仮定すれば、 5兆円の減税が行われる ことで、GDPは 7.5兆円 だけ増加する。 また、 投資額が2兆円増加すると、 GDPは 5兆円 だけ増加する。 131. 今、限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、10兆円の減税をす ることで、GDPは 30兆円だけ増加する。 132. 今、 政府支出増加に関する乗数が3.5 であったとすると、 税に関する乗数は 133. 建設事業以外の目的で発行される国債を 赤字国債 (特例国債でも可) -2.5 である。 という。

回答募集中 回答数: 0
数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0
1/23