学年

質問の種類

数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
数学 高校生

この問題のエ.オには0.6がはいり、カ.キには1.2が入ります。 なぜ両方の求め方で正規分布N(51.0,0.3^2)に従っているのに標準偏差の値が変わるのでしょうか、? 求め方が違うということがやかるのですがなぜ値が変わってくるのかわかりません。。わかる方いらっしゃいまし... 続きを読む

第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては、必要に応じて(第5回-16) ページの正規 分布表を用いてもよい。 統計的な推測においては、本質的に重要な性質がある。それについて考えてみよう。 (1)母集団から無作為抽出された標本の独立性とその特徴について、実際の例をもと に考える。 いま, 内容量 50g と表示された小袋が四つ入ったお菓子の袋(以下,「大袋」と呼 ぶ)があったとする。以下では、袋の重さは考えずに、お菓子の重さだけを考える ことにする。四つの小袋に入っているお菓子の重さを,それぞれ X1,X2, X3, X4(g) とし,各X, (i = 1, 2, 3, 4) は平均 (期待値) 51.0 標準偏差 0.3 の正規分布 N (51.0, 0.32) に従うとする。 このとき,Y=X1+X2+X』+X」 とおけば、各Xは互いに独立と考えてよいか ら、確率変数Yの平均はE(Y) 計算できる。 標準偏差は (Y)= アイウ エ. オ と ところで,大袋に表示されているお菓子の重さは50×4=200(g) である。これ と対比するために,小袋に分けられていない四袋分のお菓子の重さを表す確率変 数Z = 4X を考える。 ここでXは正規分布 N (51.0, 0.32) に従うとする。 このとき,確率変数の定数倍の平均と標準偏差についての関係式によれば,Zの キ 平均はE(Z) = アイウであるが,標準偏差は (Z)= カ となり,上 で求めた。 (Y) の計算結果と異なる。この差は,X1,X2, Xs, X4 が無作為標本で あり、各X; が互いに独立であることに起因している。 この例からわかるように、無作為標本の性質,すなわち,確率変数が互いに独立 な同一の分布に従っていることを理解しておくことが重要である。 (数学II,数学B,数学C第5問は次ページに続く。) (第5回13)

回答募集中 回答数: 0
1/8