学年

質問の種類

数学 高校生

(3)についてです。 なぜa=の式ではなくb=の式を代入するのでしょうか 逆ではダメなのですか?

は0でない とろがともに3の倍数ならば,7a4bも3の倍数であることを証明せよ。 ひと 40 がともに整数であるようなαをすべて求めよ。 a もの倍数で,かつがαの倍数であるとき, aを6で表せ。 aがろ 「αがもの倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき, 整数を用いて a=bk と表される。このことを利用して解いていく。 (2)αは5の倍数で,かつ40の約数でもある。 ( a, b が3の倍数であるから, 整数k, lを用いて) よって a=3k, b=31と表される 7a-46=7・3k-4・3l=3(7k-4l) 7k-41 は整数であるから,7a-46 は3の倍数である。 A (2) ゆえに,kを整数としてα=5k と表される。 -が整数であるから,αは5の倍数である。 40_40_81001) って 5kk a P.516 基本事項 ■ b は αの約数 a=bk Labの倍数 1年 整数の和差積は整数 である。 <a=5k を代入。 (C) a が整数となるのは, kが8の約数のときであるから k=±1, ±2, ±4, ± 8 したがって a=±5, ±10, 20, ±40 αがbの倍数, bがαの倍数であるから, 整数k, lを 用いて a=bk,b=al a=bk を b=al に代入し,変形すると b = 0 であるから kl=1 とされる。 b(kl-1)=0 負の約数も考える。 <a=5kにkの値を代入。 αを消去する。 k, lはともに1の約数で ある。 4 章 18 約数と倍数 最大公約数と最 k, lは整数であるから k=l=±1 したがって a=±b 倍数の表し方に注意! 上の そば (1) で a=3k, b=3kのように書いてはダメ! あは別々の

未解決 回答数: 1
情報:IT 高校生

マーカー引いたところが分かりません。 まず浮動小数点数とは何か全く知らないので丁寧に教えて下さると嬉しいです。

類題 : 6 例題 6 実数の表現 2 10 進数の 6.75 を,16 ビットの2進数の浮動小数点数(符号部1ビット,指数部5ビット,仮数部 10 ビッ ト)で表すことを考える。 次の文章の空欄に適当な数字を入れよ。OTO (C) 3 2進数の桁の重みは以下のようになる。 ( 整数部 小数点 小数部 8 4 2 1 1/2 1/4 1/8 1/16 よって6.75 は, 6.75=4+2+0.5+ ( ① )のように桁の重みに分解できるので, 6.75 (10)=110.11(g) と2 進数へ変換できる。 次に, 110.11(2) = +1.1011×22となるので, 符号部は(②), 仮数部は(③)となる。 指数部は 2+15=17から( 4 ) となる。 以上より, 求める浮動小数点数は,(⑤)である。 解答 0.25 (2) ③ ④ 10001 1011000000 158921 ⑤ 0 10001 1011000000 (2) ベストフィット n 進数の桁の重みは,次のように求められる。 整数部 小数点 小数部 n³ n² n¹ n° -2 -3 -4 n n n n 解説 指数部は一番小さな指数が0となるように数値を加えて調整する。この例題の場合、指数部は5ビットなので15を加える 例題 7 文字のデジタル化 類題 : 7 2進数00000001001000110100010101100111 2進数 16進数 0 1 右の文字コード表(一部) において,次の問いに答えよ。 0000 2 0 NUL DLE (空白) 3 4 [0001] 1 (1) 「E」に対応する文字コードを16進数で表せ。 SCH DC1 ! 0010 2 STX DC2 |0011| 3 FTX 0120 © A B abc 15 P Q R S 10 7 6 p a r S

未解決 回答数: 1
数学 高校生

⑴がどうしてこう求めるのかよくわかりません。

第9章 整数・数学と人間の活動 Think 素因数に関する問題 **** 例題 254 (1) 301が3で割り切れるとき、んの最大値を求めよ。ただし、は 然数とする. J (2) 100! 一の位からいくつ0が連続する整数か答えよ。 30・29・28・27・・6・5・4・3・2・1 考え方 (1) 30!÷3= |解答 つであるから、3で割り切れるというこ 13603'=3, 32=9, 3°=27, 3‘=81 (30) より 3, 32, 33 について考える。 (ガウス記号を使った素因数の個数の表し方は p.594 を参照 とは, 30! 3 を因数としていくつ含むか考えればよいのん (2) 一の位から続く0の個数は,含まれる因数10の個数に等しいということである。 + 10=2.5 であり, 10は2と5の1個ずつの積であるから, 因数10の個数は、 2と5の個数のうち少ない方となる。 に掛けると、その値がともに (1) 1から30までの自然数について。 3の倍数は, 36, 9, 12, 15, 18,21, 24, 27,300000g= 羽 54 の10個 32の倍数は, 9, 18, 27 の3個 bet 9000 3の倍数は、27の1個 top)+(depe) +(D+offee)= であるから 30! に含まれる因数3の個数は、 次の よって, 314 が題意を満たす最大の値であるから, edda 求めるんの最大値は, k=14₂0PAPARDIS (2) 100! に含まれる因数10の個数は, 10=2.5 より 然目2と5を因数としていくつ含むか調べればよい さらに5を因数として含む個数の方が2を因数と して含む個数より少ないため, 5について調べる. 1から100までの自然数について, 5の倍数は, 5,10,15, 20, 25,5075,100の4個 100の20個 20 の倍数は, (個) 十七itorixe= 10+3+1=14 4 により,100! に含まれる因数5は、20+4=24 (個) であ り,100! に含まれる因数10も24個である。05 +100 24 15 よって求める 0 の個数は, 61 (22+4025 +500) X-W 303の商 30÷9の商 30÷27 の商 1から100までの自然 数 ....., 95, 2の倍数は50個 5の倍数は20個 3の倍数 369 12,15,18,2124,27,30 O, O, O, O, O, O, O, JMMJBS (100)より、 °=125 5と52だけ調べれば よい. 4倍草下 実際,2の倍数だけで も50個ある。」 注》〉 30! に含まれる因数3の個数は次のような表を使うとわかりやすい int 因数10の個数と求め の個数は一致する。 ○ 10 個 表より 30 3 を因数として, 10+3+1=14 (個) 含む. (○は3の倍数に 含まれる因数3 3個を表す) 118 (1) 20! が 2で割り切れるとき, kの最大値を求めよ。 ただし,は自然数と する。 214 (2) 300! 一の位からいくつ0が連続する整数か答えよ.4)( 数の24 2. p.542回

回答募集中 回答数: 0
1/4