学年

質問の種類

数学 高校生

この問題の図示が難しくて出来ません 分数の三次関数のグラフの書き方を教えてください! お願いします!!

3次曲線と接線 99 とができるような, a, bの条件を求め, 点 (a, b) の存在する領域を図示せよ。 点(1,0)を通って, 曲線 y=x²+ax²+bxに異なる3本の接線をひくこ 精講 曲線 y=f(x)の接線の方程式は, 接点(t, f(t)) により決まります. このときの接線の方程式は y=f'(t)(x-t)+f(t) であり,これが点(α, b) を通ることから,t の方 程式 b=f'(t)(a-t)+f(t) ......(*) を得ることができます. この方程式をみたす tを 求めれば,その点における接線が1本ひけること になります。 すると, 3次関数のグラフでは接点 が異なれば接線も異なるので, 接線の本数=接点の個数 =方程式(*)の実数解の個数 ということになります。 解答> 解法のプロセス 接線の方程式 y=f'(t)(x−t)+ƒ(t) y=x³+ax²+bx y'=3x²+2ax+b 曲線上の点(t,t+at+bt) における接線の方程 式は f(t)=2t³—(3—a)t²—2at—b とおく. 3次関数のグラフでは接点が異なれば接線 も異なるので 点 (1, 0) を通る接線が3本ひける ⇔f(t)=0 が異なる3つの実数解をもつ ↓点(1,0)を通る 0=f'(t)(1-t)+f(t) ↓ (*) 方程式(*)が異なる3つの実数 解をもつ y=(3t²+2at+b)(x−t)+t³+at²+bt :: y=(3t²+2at+b)x-2t³-at² これが点 (10) を通るのは 0=-2t°+(3-a)t2+2a+bを通って接線をいく to your it のときである. 方 接線が3本存在する 225 yi f y=f(t)₁ KHUT

回答募集中 回答数: 0
数学 高校生

左下から右上の式変形が理解できません。 教えていただきたいです🙇‍♂️

ニューステージ IA+ⅡB y=(t) のグラフと直線y=kが相異なる2つの 共有点をもつことである。 このとき、 右の図から 78 k0 シス 8 同様に考えて、 右の 図から、点Pを通る 接線の本数は k=5のとき1本, k=-2のとき 3本、 k=-12のとき 1本 である。 となることである。 ここで f'(x)=0 とすると y=5 O y=-2 251(不等式の成立条件) f(x)=x-a(x2-α)とおく。 すべてのx(x≧0 に対して, 与えられた不等式 ) が成り立つための条件は,x≧0 において (f(x) の最小値) ≧0 x 0 -8 f'(x) =3x2-2ax=x(3x-2a) f'(x) 0 f(x) 1 2 x=0, a [1] [1/30 ≦0 すなわち as 70 のとき 028 x≧0 においてf'(x) ≧0であるから, f(x) は 単調に増加する。 よって, f(x)はx=0で最小となる。 ゆえに,不等式が成り立つための条件は f(0) 20 すなわち 2≧0 1-10 これはすべての実数a に対して成り立つ。 よって a≤0 [2] 12/34 > 0 すなわちa>0のとき x≧0 におけるf(x) の増減表は次のようにな る。 3 2 ga -a³ 27 0 + オ 極小 2 よって, f(x)はx= αで最小値をとる。 3 ゆえに,不等式が成り立つための条件は 7/3/30) 20 8 すなわち 2010-0) 20 al 整理して a>0であるから 27 0<a</ a>0と合わせて [1] [2] から 求めるαの値の範囲は オカ 27 +4 a² (a-27) ≤0 4 252 (不定積分) (1) S (x+3-7)dx a≦ =1/1/3+1/23x27x+C(Cは積分定数) (2) f'(x)=(3x+2) であるから f(-1) = 0 から f(x)=f(3x+2)dx=$(9x2 +12x+4)c =3x3+6x2+4x+C (Cは積分定数 3・(-1)+6・(-1)²+4・(-1)+C=0 よって C=1 ゆえにf(x)=3x3 +6x2 +4x+1 (3) f'(x)=2xから = f(x)=2xdx=x2+C (Cは積分定数 曲線 y=f(x) が点(0, 1) を通るから f(0)=1 よって C=1 ゆえにf(x)=x2+1 (4) 27 a-47/50 253(定積分) (1) S(3x2+4x-5)dx=[x+2x²-5x]=78 (2) x4 4 CHECK - ウ 27 4 2f'(x-1)dxf (2x-3)dx =S, {2(x-1)-(2x-3)|dx=f1dx=[x]=" (3) S_(x+1)x−2)°dx=f(x)] -x³+4x 24 - (-1)4 4 3 254 (x³-3x²+4)dx --{23-(-1)3}+4{2−(−1)} Slx(x+2}\dx * = -√°, (x² + 2x) dx + √²³ (x² + 2x)dx

回答募集中 回答数: 0
数学 高校生

なぜ赤で囲われたところのように導けるのですか?

可礎問 150 第6章 95 接線の本数 曲線C:y=-x 上の点を T(t, f-t) とする. (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a,b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ.ただし, a>0, b=α-a とする. (3) (2) のとき, 2本の接線が直交するようなα, b の値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は、接点の個数と一致し ます.だから, (1)の接線に A (a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注で学習済みです。 (3) 未知数が2つあるので,等式を2つ用意します。 1つは (2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです. 接線の傾きは接点における微分係数 (83) ですから, 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと,f'(x)=3x²-1 よって, Tにおける接線は, y−(t³—t)=(3t²-1)(x− t) ∴.y=(3t2-1)x-2t3 (2) (1) の接線は A (a, b) を通るので b=(3t²−1)a-2t3 :. 2t³-3at²+a+b=0___······(*) (*)が異なる2つの実数解をもつので g(t)=2t3-3a2+a+b とおくとき, y=g(t) のグラフが,極大値、極小値をもち, (極大値)×(極小値)=0 であればよい. 94 注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t = 0, t = a だから 85 y=x³- A(a,b) f (t,t³-t)

回答募集中 回答数: 0
1/3