学年

質問の種類

数学 高校生

赤線部分がなんでそうなるのかわかりません

ONE 解答 基本例 |関数y=2 141 三角関数のグラフ (2) 日 π 2cos ( 12-10 ) のグラフをかけ。また、その周期を求めよ。 6 例題 一π てグラフをかく要領は,次の通り。 ① y=costを軸方向に2倍に拡大 基本のグラフy=cos0 との関係(拡大・縮小,平行移動)を調べてかく。 y=2cos (12)より、y=2cos2/21(0-1/8) 1 であるから、 基本形y=cos0をもとにし 3 →y=2cose ② ①を軸方向に2倍に拡大 倍は誤y=cos 0 注意 y=2cos( ③ ②0軸方向にだけ平行移動 0 π 2 6 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小, 平行移動 1 よって, グラフは図の黒い実線部分。 周期は2π÷ 2 YA 2 3, y=2 cos(-)-2cos (0-3) 6 √3 3y=2cos (0) 4 3 3 27 -=- 11 π0π 2 3 -1 -2 SA! π 2 →y-2 cos(0). のグラフがy=2cos/1/27 のグラフを軸方向に π y=cose = 7 2π π 5|2 〃 2π ② y=2cos 10 103 3π 3,7 √22! 9-2 0 ! ---- 7 4π 27 = 4T 13 π 3" 00000 9 2π 0 ------ 基本 140 0 2 ③3③ だけ平行 0の係数でくくる。 <y=cos' の周期と同 229 じ。 0軸との交点や最大・ 最小となる点の座標を チェック (2.0). (5.2). (1.0), (1. -2). Ⓒy-2cos6/19 (1x, 0). (1.2) (10) ・π, 試験の答案などでは,上の図のように段階的にかく必要はない。 グラフが正弦曲線であることと周期が4であることを知った上で,あとは曲線上の主な点 をとってなめらかな線で結んでかいてもよい。 B 4章 2 三角関数の性質、グラフ

回答募集中 回答数: 0
数学 高校生

三角関数のグラフの書き方についてなのですが、右の写真にあるようにθ軸との交点や最大、最小となる点の座標を求めるにはどうしたらいいのでしょうか。例えばθ軸との交点(y=0の点)を求めるために関数の式のyに0を代入してみたのですが、πの二乗?みたいなのが出てきてしまって行き詰ま... 続きを読む

目をいえ、 -0) えられる。 行移動 tulo R To 7 基本例 例題 解答 関数y=2cos 2 cos (25) 04 - 6 141 三角関数のグラフ (2) 基本のグラフy=cose との関係 (拡大・縮小,平行移動)を調べてかく。 指針 y=2cos(12/1)より、y=2cos- 08/1/2 (0-17 ) であるから、基本形 y=cos0 をもとにし てグラフをかく要領は,次の通り。 ① y=cose を軸方向に2倍に拡大 →y=2cos e ②①を軸方向に2倍に拡大 (1/2倍は誤り)y=2cos- 2 0 [3] -T 3, ②を軸方向に45だけ平行移動 注意 y=2cos (1) (12-1)のグラフがy=2cos/1/2のグラフを軸方向に4だけ平行 6 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小, 平行移動 y=2cos(-4)=2cos (0-3) 1/2 1 よって, グラフは図の黒い実線部分。 周期は 2÷ 2 ② y=2cos/ √3 π 2 yA 2 1 のグラフをかけ。 また, その周期を求めよ。 -1 -2 3 y=2cos ½ (0-3) 0 113- I 2 43 37 π! y=coso ino 73 15 2π 5|2 K. 2 022 0=2 cos 2 TV =2人 10 √3 1103 1/ 10 3π 3 →y=2cos- π 7 70 ① y=2cose 2 cos/(0-3) TU 0 = 70-200 033 一 4π = 4T 9 2 13′ 37 π 基本140 2 11 TV - 30²-9 0の係数でくくる。 y=cos- O=TU 3 229 注意 試験の答案などでは,上の図のように段階的にかく必要はない。 グラフが正弦曲線であることと周期が4πであることを知った上で,あとは曲線上の主な点 をとってなめらかな線で結んでかいてもよい。 (0-7) T2 3 smの周期と同 2 じ。 0軸との交点や最大・ 最小となる点の座標を チェック。 -337, 0), (3, 2), (3, 0), (1/37, -2), 10 (1, 0). (13³7, 2) 4章 2 三角関数の性質、 グラフ

回答募集中 回答数: 0
数学 高校生

(2)の(ii)でなぜα<=p<βになるのかが分かりません!解説お願いします🙇🏻‍♀️

数学Ⅱ・数学B (第1問 第2問 (必答問題)/ 第3問~第5問 (選択問題)) [学・学] 2001 HRRI) 第1問 (必答問題)(配点 30) 〔1〕 関数 f(x)=acos (bx+cm) について, y=f(x)のグラフをコンピュータのグラ cに値を入力すると、 フ表示ソフトを用いて表示させる。 このソフトでは,α, b, その値に応じたグラフが表示される。 このとき、 下の問いに答えよ。 ただし,α に入力できる値は正の実数とする。 (1) 次の図1は,a=1,b=2, c=3 を入力したときに表示されたグラフを表して いる。 y ol BOCOOL THE 381 TC MA A it 000000 図 0 0 0 0 0 6 (300 ME IN (数学ⅡⅠ・数学B 第1問は次ページに続く。) 次の(1), (II), (Ⅲ)は,図 1 を表示させた後に, a,b,cの値のうちいずれか1つ の値だけを変えたときに表示されたグラフである。 変えた値の組み合わせとして 正しいものを次の⑩~⑤のうちから一つ選べ。 ア ただ,図 1, (I), (II), (II)のグラフのx軸、y軸に平行な直線は、それぞれ同じ 幅で、等間隔に並んでいるものとする。 (I) (III) W na YA AA (II) YA WAA # (I)はα, (II)は, (ⅢI)はcの値だけを変えた。 ① (I)はα, (II)はc, (ⅢI)は6の値だけを変えた。 (I)は,(II)はα, (ⅢI)はcの値だけを変えた。 ③ (I)は6, (II)はc, (II)はαの値だけを変えた。 ④ (I)はc, (II)はα(ⅢI)は6の値だけを変えた。 ⑤ (I)はc, (II)は6, (ⅢI)はαの値だけを変えた。 (数学ⅡI・数学B 第1問は次ページに

回答募集中 回答数: 0
数学 高校生

(2)のiiが分かりません!pのとりうる範囲について解説お願いします🙇🏻‍♀️

数学Ⅱ・数学B (第1問 第2問 (必答問題)/ 第3問~第5問 (選択問題)) [学・学] 2001 HRRI) 第1問 (必答問題)(配点 30) 〔1〕 関数 f(x)=acos (bx+cm) について, y=f(x)のグラフをコンピュータのグラ cに値を入力すると、 フ表示ソフトを用いて表示させる。 このソフトでは,α, b, その値に応じたグラフが表示される。 このとき、 下の問いに答えよ。 ただし,α に入力できる値は正の実数とする。 (1) 次の図1は,a=1,b=2, c=3 を入力したときに表示されたグラフを表して いる。 y ol BOCOOL THE 381 TC MA A it 000000 図 0 0 0 0 0 6 (300 ME IN (数学ⅡⅠ・数学B 第1問は次ページに続く。) 次の(1), (II), (Ⅲ)は,図 1 を表示させた後に, a,b,cの値のうちいずれか1つ の値だけを変えたときに表示されたグラフである。 変えた値の組み合わせとして 正しいものを次の⑩~⑤のうちから一つ選べ。 ア ただ,図 1, (I), (II), (II)のグラフのx軸、y軸に平行な直線は、それぞれ同じ 幅で、等間隔に並んでいるものとする。 (I) (III) W na YA AA (II) YA WAA # (I)はα, (II)は, (ⅢI)はcの値だけを変えた。 ① (I)はα, (II)はc, (ⅢI)は6の値だけを変えた。 (I)は,(II)はα, (ⅢI)はcの値だけを変えた。 ③ (I)は6, (II)はc, (II)はαの値だけを変えた。 ④ (I)はc, (II)はα(ⅢI)は6の値だけを変えた。 ⑤ (I)はc, (II)は6, (ⅢI)はαの値だけを変えた。 (数学ⅡI・数学B 第1問は次ページに

回答募集中 回答数: 0
1/2