学年

質問の種類

物理 高校生

問題集17についてです (4)の解答で①を代入してと書いてありますが、①は切断する前の関係なのになんで切断後も使えるんですか?

14 (イ) 糸yの張力はいくらか。 (ウ)Bが板を押している力はいくらか。 16 基 水平な床から 30°傾いた斜面上に 質量mの物体Pがあり, 質量Mの小 物体Qと滑らかな滑車をかいして糸で 結ばれている。 Pと斜面の間の静止摩擦 係数を / 動摩擦係数をとし、重 力加速度をg とする。 2/3 力学 15 (武蔵工大+北海道工大) 0=v+α'tz より 141 17 等速度運動 (等速直線運動) では力のつり合いが成りたつ。 浮力 (1) Aに注目すると T=mg (2) B に注目すると F=Mg+T= (M+m)g ... ① Mg, m P 130° 浮力の公式 F=pVg より V=F_M+m 浮力は周りの流体 の密度で決まる B T pg P (3)Aは初速での投げ上げ運動に入る。 地面の座標は x=-h だから,公式を用いて T A mg (1) PQ が静止しているためのMの範囲をm を用いて表せ。 (2)味からのQの高さをおとしごととして静かに放すと 下がり始めた。Pが滑車に衝突することはないものとする。 (7)Qの加速度の大きさと、Qが床にするときの速さ よ。 か を求め (イ) Q が床に達した後,Pはやがて斜面上で最高点に達して止まった。 Pが動き始めてから止まるまでに移動した距離とかかった時間 を求めよ。 -h=vto+(-9)to gt-2 vto-2h=0 この方法を 3- マスターしたい to >0より to = 1/1 (u+vo+2gh) 9 (4) 糸が切断された後の気球の運動方程式は, 加速度をαとして Ma=F-Mg を代入して a= g えるの 公式③より v₁²-v² = 2 ah .. U₁ = 02+2mgh V M -hmm (富山大 + 横浜国大) 18 (2) 17 質量 M の気球B (内部の気体も含む)が、質量 mの小物体Aを質量の無視できる糸でつるして, 定の速さで上昇している。 重力加速度をg とし 空気の抵抗および物体Aにはたらく浮力は無視でき るものとする。 (1) 右のようになる (Mg, N などの文字は不要)。 N = Mg cos 0 だから 垂直抗力N 空気抵抗力kv B Ma=Mg sin 0-Mg cos 0-kv ...⑰ (3) 等速度運動では力のつり合いが成りたつ。 斜面 方向について Mg sino=μMg cos 0 + kv 動摩擦力 μN A .. v= Mg k (sin0-μ cos0) ... ② 等加速度 重力 3 Mg ではない (1) 糸の張力Tはいくらか。 (2) 気球Bにはたらく浮力Fはいくらか。 また,外部の空気の密度を p とすると,気球の体積Vはいくらか。 物体Aが地面からんの高さになったとき,糸を切断した。 (3) Aが地面に到達するまでに要する時間toはいくらか。 (4) 糸が切断された後, 気球がさらにんだけ上がったときの気球の速 さひはいくらか。 (信州大 ) 別解 等速度では α=0 なので, ①よりを求めてもよい。 (4) t=0では,v=0 なので抵抗力はなく, 加速度を α とすると, ①より Ma = Mg sin 30°μ Mg cos 30° ...3 一方,図2の v-t グラフでは接線の傾きは加速度を表すから ao=3 [m/s] と分かる。 ③より (Mは両辺からカットして) 3= 3-10--10-3 2 2 5√3 15 =2√3 = 0.23 有理化すると 計算しやすい (5)図より終端速度はv=4 [m/s] だから, ② を用いて

回答募集中 回答数: 0
物理 高校生

大問27と大問28が何回解説読んでも分かりません、、 特に分からない点は式の変形(大問27の(3))となんでこの公式を使うのかです!

27 鉛直投げ上げ 数 p.32~33 27 小球を初速度 24.5m/sで鉛直上向きに投げ上げた。 重力加速度の 大きさを9.80m/s2 とする。 (1) 鉛直下向きに 4.9m/s (2) 30.6m (1) 3.00 秒後の速度 (速さ [m/s] と向き) を求めよ。 (2) 小球が達する最高点の高さん [m] を求めよ。 (3) 1.00 秒後と 4.00 秒後 (3) 投げ上げてから高さ19.6mの所を通過するまでの時間t[s] を求 めよ。 v=24.5-9.80×3.00= -4.9m/s (1) 「v=vo-gt」より 鉛直下向きに4.9m/s (2) 最高点では小球の速度は0となるので, 最高点に達するまでの 時間は [v=vo-gt」 より よってt=2.50s 0=24.5-9.80t 「y=cot-- 11/1/20より 1 h=24.5×2.50- -×9.80×2.502≒30.6m 2 (3) 小球は 19.6mの点を上昇しながら通過し 最高点に達した後, 下降に転じ再び 19.6 mの点を通過する。 よって求める時間は 2つとなる。 30.6m 19.6m 「y=vot-122gt」より 1 19.6=24.5t- ×9.80×2 2 t2-5.00t+4.00=0 (t-1.00) (t-4.00)=0 鉛直投げ上げの式は鉛直上向き を正としているので、速度が負 の場合は、鉛直下向きに運動し ていることを表す。 (2)の別解)-v=-2gy」 より 02-24.52=-2×9.80xh よって ん≒30.6m よってt=1.00, 4.00 したがって 1.00 秒後と 4.00 秒後 28 鉛直投げ上げ 教 p.32~33 28 ビルの屋上の点Pから物体を鉛直上向きに速さ 4.9m/s で投げた。 重力加速度の大きさを 9.8m/s2 とする。 (1) 1.0秒 (2) 29m (1) 投げてから、 再び点Pにもどるまでの時間は何秒か。 (2) 投げてから3.0秒後に地面に達したとすると, 点Pの地面から の高さは何mか。 (1) 「y=oat-1/12gf」より、点Pにもどるまでの時間を f[s] とす 2 ((1)の別解) 再び点Pにもどっ てきたときの物体の速度は - 4.9m/s だから,「v=vo-gt」 より ると 0=4.9t- ×9.8×2 よってt=1.0s (2) 「y=vot-1/12gt2」より,点Pの地面からの高さを ん 〔m〕 とする 1 とん=4.9 × 3.0 - ×9.8×3.0²=-29.4≒-29m よってt=1.0s 2 よって h=29m 4.9=4.9-9.8t

回答募集中 回答数: 0
1/35