学年

質問の種類

数学 高校生

指針の四角1、2までは分かるんですが、四角3の“②をθ軸方向に3分のπだけ平行移動”というところがどうしてそうなるのか分かりません。2分の1でくくってあるから、掛けて、6分のπだけ平行移動させたくなります、、2分の1はなぜ無視して3分のπだけになるのでしょうか?教えてくださ... 続きを読む

基本 例題 141 三角関数のグラフ (2) 関数 y=2cos| 00000 s(12-16)のグラフをかけ。また,その周期を求めよ。 基本 140 指針 基本のグラフy=cos0 との関係 (拡大・縮小, 平行移動)を調べてかく。[] y=2cos π π os(12/28-1/6)より,y=2cos/1/20-1/3)であるから、基本形y=cos をもとにし てグラフをかく要領は,次の通り。 1 y=cose を 軸方向に2倍に拡大 →y=2cos ② ①を 0軸方向に2倍に拡大(12倍は誤り) y=2cos/12 0 ③②を軸方向にだけ平行移動 → ① ② π →y=2cos 0- 3) 2 3 注意 y=2cos (12/17)のグラフがy=2cos 1/2のグラフを軸方向にだけ平行 6 2 229 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小,平行移動 π 答 2 y=2cos (1) =2c0s1/12 (87) 10の係数でくくる。 JOHA 1 よって, グラフは図の黒い実線部分。 周期は2÷ =4T = 2 | y=cos の周期と同 Cas tan 9. ・傾き YA じ。 3y=2cos (0-1) 0 ② y=2cos2 2 2 2 π 今 3π -3-2- 14-3- イ π T 一π π 2 22 |3- 0 π π 2 π 2π I 1 2TT 3π |52| 10 I 13 L -72 19-21 E 2 --- 1 4π π 333 13 π 8 0軸との交点や最大・ 最小となる点の座標を チェック。 (-.0). (2 7 ・π,

解決済み 回答数: 1
数学 高校生

(i)と(iii)の問題についてです。 二枚目の写真の答え方でもいいですか?

72 第2章 関数と関数のグラフ 練習問題 5 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (i) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 S 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 =g 平方完成すると (y軸対称 y=(x-3)2+1 なので,頂点の座標は (3,1) である. 元の (i) x軸に関して対称移動すると,頂点は (3-1)に移り,グラフの上下が反転す (-3, 1) (-3,-1) 0 (3,1) グラフ (3, -1) X 求めるグラフの方程式は, y=(x-3)-1 (=u2+6-10) り長いび 原点対称った るので㎡の係数は -1 となる。よっては (x軸対称) (y軸に関して対称移動すると, 頂点は (-3,1) に移り、グラフの形状は 変化しないのでの係数は1となる.よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=(x+3)-1 (=-x²-6x-10) コメント 対称移動においても,平行移動と同じように一般的な法則があります。 対称移動の一般則 x 軸に関して対称移動

未解決 回答数: 1
1/437