学年

質問の種類

数学 高校生

二次関数 絶対値を含む関数のグラフの基礎の基礎についてです 実線部分ってどうやって求められるんですか?? ヘルプ;;

229 (1) x-2≧0 すなわち x>2のとき y=x-2 x-2<0 すなわち x<2のとき y=-x+2 よって,グラフは[図] の実線部分である。 (2) 3x+2>0 すなわち x≧- y=3x+2 2 3x+2<0 すなわち x <! 333 のとき 2 解 -2 y=-3x−2 よって, グラフは [図] の実線部分である。 (1) .2 4x 編 1/1/2のとき (2) 4 -3 y O 2 3 2 (3) y=|x2-4x|=|x(x-4)| x(x-4)≧0 すなわち x≧0, 4≦xのとき 25 -59 y=x2-4x=(x-2)2-4 x(x-4)<0 すなわち0<x<4のとき y=-x2+4x=-(x−2)2+4 よって, グラフは 〔図] の実線部分である。 (4) y=x2+3x-4|=|(x-1)(x+4)| (x-1)(x+4)≧0 すなわち x≦-4, 1≦xのとき y=x2+3x-4=(x+2/22-25 (x-1)x+4)<0 すなわち -4<x<1のとき 3\2 y=-x²-3x+4= -(x + 2)²³+25 4 共通部分である。 1 多項式の 指数法則 m ① am xa"= ③ (ab)"=d 展開の公式 ① (a+b)^ ② (a+b)( 3 (x+ a)( 4 (ax+b 2 因数分1 共通因数を 因数分解 ① a²+20 ②a²-bi ③x2+(1 4 acx²- 3実 実数の分 実数 有 [無 ・絶対値 a≥0 ( 66 ● 第3章 2次関数 研究 絶対値を含む関数のグラフ 例題 36 考え方 解答 絶対値を含む関数のグラフ 関数 y=|x+1|+|x-3|のグラフ B問題 絶対値記号の中の式の符号によって場合: x+1, x-3の符号で場合を分けて考える x<-1のときy=-(x+1)-(x-3) よって y=-2x+2 -1≦x<3のとき y=(x+1)-(x-3) よって y=4 3≦xのときy=(x+1)+(x-3) y=2x-2 よって したがって, グラフは右の図の実線部分 229 次の関数のグラフをかけ。 *(1) y=|x-2| *(3) y=|x2-4x| 230 次の関数のグラフをかけ。 (1)y=x²-2|x|

回答募集中 回答数: 0
数学 高校生

問6の(1)の解き方が理解できません。 HINTに与式とありますがどのようにしてその式になるのかがわからないです。 教えてください、、

④6 次の式を計算せよ。 (1) (x-b)(x-c)(b-c)+(x-c)(x-a) (c-a)+(x-a)(x-b)(a-b) (2) (x+y+z)-(y+2z-x)-(2z+x-y)-(x+y-2z)共(2) 山梨学院大] >>ROS$#9 HINT A BELASK 括弧をはずして P, Q, R の式を整理してから代入する。 括弧をはずすときは、内側からは ずす。つまり(), {},〔〕の順にはずす。 2 (1) 求める式をPとすると P+ (3x2-2x+1)=x2-x もと糖分横因の火 (2) ある多項式(もとの式) を P, これに加えるべき式を Q, 誤って式Qを引いた結果の式 をRとすると P-Q=R ゆえに P=Q+R これをもとに, 正しい答えを考える。 4 (7) (1+a)(1-a+α²) (1-a²+α°)として,3次式の展開の公式を利用する。 5 (1)(ア)2つの()内の,どの項の積がxの項となるかを考える。 (2) 3つの()から,xの項yの項,2の項を1つずつ掛け合わせたものの和が xyz の項 となる。 6 そのまま展開してもよいがかなり大変。1文字について整理する,同じ式はおき換える な どすると, 見通しがよくなる。 (1) (5x)=(b-c)(x-b)(x-c)+(c-a)(x-c)(x-a)+(a−b)(x-a)(x-b) x 2の項の係数は, b-c+c-a+a-b=0となる。 (2) 似た式があるから, おき換えで計算をらくにする。 例えば, y+2z=Aとおくと, (x+y+2z)は(x+A) となる。 これに3次式の展開の公 式を使う。

回答募集中 回答数: 0
数学 高校生

x²+y²の値の求め方教えていただきたいです🙇🏻‍♀️ (マーカーで囲ってあるところからよく分かりません😭)

成績上位者の定番テクニック 成績 解き方 ワザあり 解き方 すぐに値を代入しない。 値を求める式を変形してから代入する。 問題を解いて確認! V5-2 リ= V5+2 V5+2 のときのr+y, xyの値を求めよう。さらに,これらを利用して, ?+u?a V5-2' 値も求めてみよう。 問題 直接代入して,x+y, xyの値を求める方法 x+y, yに, xとyの値を代入して, V5-2 分母をそろえるために, 分母と分子に 同じ数を掛けて通分しよう。 (¥5+2)(/5+2) , (V5-2)( (V5-2)(75+2)' (V5+2) (75 V13+ 5+2+ V5-2 x+y= 13+ V5+2 V13 の 三 (V5+2)(V5-2) (V5-2)(V5 +2) (V5)+2×V5x2+2°+(/5)-2×V5×2+2° V 【展開の公式) 分子は,(a+b)。-α+2ab+b° だから (V5)-22 5+4V5+4+5-4V5+4 (a-b)?=a"-2ab+6 はさま (答) 分母は,(a+b)(a-b)=a"-b° を利用する。 >『?」なら、p.40 をチェック! -=18 5-4 5+2 5-2 5-2 (答) と表す =1 5+2 分母を有理化したx, yの値をx+y, xyに代入する方法 まず,r, yの分母を有理化すると, V5+2_(V5+2)(/5+2) V5 -2 (V5-2)(/5 +2) TY= そこて 【分母の有理化) 分母と分子にV5+2を掛ける。 >「?』なら, p.47 をチェック! べると X= 3 (/5)?+2×V5 ×2+2°_5+4V5+4 =9+4、5 ここで (V5)?-2? V5-2_(/5-2)(V5-2) V5+2(V5+2)(V5-2) 5-4 【分母の有理化) 分母と分子にV5-2を掛ける。 1?』なら, p.47をチェック! リ= これ』 (V5)-2×V5 ×2+2°_5-4/5+4 (V5)2-2? 今,三 -9-4-5 5-4 ★の名 これらの値を代入して, x+y=9+4V5 +9-4/5=18 y=(9+4V5)(9-4V5)%3D9"-(45)?=81-80=D1 次に,+y°の値を求める。 値を求めたい式はエ+y,利用できるのは, x+y, yだから これらを含む式を考えると, (r+y)。%3Dr、+2xy+y° (答) (答) だか また。 7ザあり!Q と表 これを, △ そのまま代入すると ポ+ザ=(x+y)-2ry と変形して,先に求めたx+yとyの値を代入する。← +yy=(r+y)?-2ry V5+2 V5-2 ()( これ V5-2 V5+2 となり、計算ミスをしやすい。 = 182-2×1=324-2=322 先に求めたr+y=18, y=1を代べ る。 差がつく 知っ得 がつくさ計称式 例題で扱ったx+は, xとりを入れ替えるとy°+x° となり、もとの式と同じ。 このような式を、x、 知っ得 「対称式」というよ。この「対称式」には、x+y とxy (これを 「基本対称式」 という)を用いて表せるという性質 る。例題は, この性質を使って解いたよ。 とは? yについての

回答募集中 回答数: 0
1/3