学年

質問の種類

数学 高校生

sin x /x→1の証明について 円を用いた面積比較からのはさみうちを使って証明する方法(一枚目)が有名ですが、微分係数の定義に当てはめる(二枚目)のはダメなんでしょうか? sin xのグラフの原点の傾きという意味なのですごく単純です

[証明] とし,∠ABC = 0 とする.この B 3 のグラ CD lim- 8-082 表しています。 とを を求めよ. かり記憶しておきましょう。 この大小関係は、よく利用されるものなのでしっ y=sin.x 12 0 三角関数に関する極限のうち、最も重要であるのは次の極限です . この定理を用いて, lim sin.x lim 110 I sin.x 1-0 I =1であることを示しましょう. [証明 ] x→0 とするから, 0<|x|<1としてよい。 この公式を証明するための準備として、次の定理の成立を示しておきましょう。 0<x< 10 において, sin.z<x<tanzi sinr<r<tanr の各辺を sin.x(0) で割って, 1<x 1 sinx COS.X ∴. 1> sinx > COS I I 図のように, 半径1の単位円周上に∠AOB=x (x は弧度法の角) となるように2点A, B をとる. lim cos.x=1であるから, はさみうちの原理により +0 このとき面積について, 点Aにおける円の接線と半直線 OB との交点をT とする. B. sinx lim =1 ......① 次に, 2 IC x+0 t< <<0のとき、x=-t とおくと << であるから,①より、 sinx sin(-t) sint IC lim lim- lim- =1 0115 x t+0 -t t+0 t △OAB <扇形 OAB < △OAT が成り立つ. それぞれの面積をx を用いて表すと ①.②より. 1 2 sinr<<tanr 1 2 0-(-x+x) mil lim sinx TC x0 =1 なる.したがって, 0<x<2/27において、 no inil が成り立つ. sinr<r<tang 薫り立つ. (証明終わり) この極限公式は,xが十分に小さい (0に近い)とき, sinx≒x であることを表しています.

解決済み 回答数: 2
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
数学 高校生

☆高校数学IIです☆ (2)の解き方がわかりません!! 『点Aにおける接線の傾きがf’(a)であるから』っていうところが特にわかりません。あと、f’(a)が傾きになる理由もわかりません。 どなたかよろしくお願いします🙇‍♀️

題 185 導関数と微分係数 関数f(x)=x-5x2+6xについて,次の問いに答えよ。 (1)f'(1), f'(0), f' (-2) の値を求めよ。(笑 微分係数と導関数 363 **** (2)関数y=f(x) のグラフ上の点Aにおける接線の傾きが3のとき 点Aのx座標を求めよ. 考え方 関数 f(x) において、x=a のときの微分係数f'(α) は, 導関数 導関数f'(x) f'(x) に x=a を代入するだけであることに着目する。 (1) まず導関数を求めて、xの値を代入する。 (2)接線の傾き 微分係数である。 f(x)=x-5x2+6x より f'(x) =3x²-10x+6 ・① (1) ①に x=1, 0, -2 を代入すると, f′(1)=3・1-10・1+6=-1 S'(0)=3.0°-10・0+6=6 Column f'(-2)=3・(-2)-10(-2)+6=38 (2)点Aのx座標を a とすると, 点Aにおける接線 x=a を代入 微分係数(a) (x)=x x座標だけ考えればよい. 栗良出 Focus の傾きは f'(a) であるから, ①より, f'(a)=3a²-10a +6 f'(x) に x=a を代入 これが3に等しいから E--d 3a2²-10a+6=3 ( 接線の傾き)=(微分係数) =3 342-10a+3=0 aの2次方程式 (3a-1)(a-3)=0 a= 3' 1 よって、点のx座標は, 3 3' 振袖( ly=f(x) のグラフは下の 第6章 図のようになる。(グラフ (IS氏)左のかき方は p.378 参照) yy=f(x) N 13 関数 f(x) について x=α における 微分係数 導関数f'(x) の x=a のときの値 点(a, f(a)) での接線の傾き

解決済み 回答数: 1
1/202