学年

質問の種類

数学 高校生

このページのやってることが本当にわかりません😭

つ 重要 例題 18 因数分解 (対称式 交代式) (2) ①①①①① 37 次の式を因数分解せよ。あることを用いて、 (1) a(b+c)+b²(c+a)+c²(a+b)+3abc (0) *C (2) a°(b-c)+b(c-a)+c(a-b) 基本 15.17 1 指針 例題 17 同様, a,b,c の, どの文字についても次数は同じであるから,1つの文字, 草 例えばαについて整理する。 (1) α について整理するとα+■a+▲ (aの2次3項式) →係数 に注意してたすき掛け。 CHART 因数分解 文字の次数が同じなら1つの文字について整理 (1) a^(b+c)+62(c+a)+c(a+b)+3abc 解答 ②因数分解 (1) =(b+c)a°+(62+c+3bc)a+bc (b+c) 1 ={a+(b+c)}{(b+c)a+bc} b+c b+c → b2+2bc+c2. b+c bc → bc bc (b+c) 62+3bc+c2 =(a+b+c)(ab+bc+ca) (2) a³(b-c)+63(c-a)+c³(a-b) =(b-c)a3-(b3-c³)a+b3c-bc³ =(bc)a³-(b-c)(b²+bc+c²)a+bc(b+c)(b−c) =(b-c){a-(62+bc+c)a+bc(b+c)} =(b-c){(c-a)b2+c(c-a)b-a(c+a)(c-a)} =(b-c)(c-a){b2+cb-a(c+a)} =(b-c)(c-a) (b-a){c+(b+α)} =(b-c)(c-a) (b-a) (a+b+c) αについて整理。 <係数を因数分解。 共通因 数 b-c が現れる。 <{}内を次数の低い について整理。 共通因数 c-αが現れる。 これでも正解。 =(a-b)(b-c)(c-a)(a+b+c) (c+x+5x)= 輪環の順に整理。 対称式交代式の性質 E 検討 上の例題で, (1) はα, b, c の対称式, (2) は a,b,cの交代式である。 さて、対称式交代式にはいろいろな性質があるが, 因数分解に関しては次の性質があるこ とが知られている。 ① a, b c の 対称式は, a+b, b+c, c+αの1つが因数なら他の2つも因数である。 ② a, b c の交代式は,因数 (a-b) (b-c) (c-a) をもつ 〔上の例題 (2)] 。 上の例題 (2) においては, 因数 (a-b) (b-c) (c-a) をもつことを示すために (a-b) (b-c)(c-a) (a+b+c) と変形して答えている。 練習 次の式を因数分解せよ。 ③_18 (1) ab(a+b)+bc(b+c)+ca(c+a)+3abc (2) a(b-c)3+b(c-a)³+c(a-b)³

未解決 回答数: 1
数学 高校生

141.2 どこか記述に問題あったりしますか?

222 基本例題 141 三角比を含む対称式・交代式の値 √2 2 sin0+ cos0= (1) sin Ocose, sin'0+ cos' 0 解答 指針▷ (1) の sin @cos 0, sin+cos' 0 はともに, sin 0, cos 0 の対称式 (p.32, p.50 参照)。 →和sin0+cos 0 積 sin Ocos0の値を利用して, 式の値を求める。 ......... (1)(sin Acos 0)条件の等式の両辺を2乗すると, sin²0+ cos20 と sin Ocos0 が現れ る。 かくれた条件 sin ²0+ cos20=1 を利用。 >6>0 [0€K<<== /2 (1) sin0+cos0= の両辺を2乗すると 2 sin²0+2sin@cos0+cos²0=1/2 (0° 0 <180°) のとき, 次の式の値を求めよ。 (2) sino-cose, tan0- ゆえに よって また (sin'0+cos30) a²+b^²=(a+b)(a²−ab+b2)を利用。 (2) sin-cose については、 まず (sin 0- cos 0)' の値を求める。 0°<B <180° と (1) の結 果から, sin0-cos 0 の符号に注意。 = よって②から sinocos0=-- sin³0+cos³0 = (sin 0+cos 0) (sin²0-sin cos 0+ cos²0) 30 -√(1-(-1))-5√/2 (2)0°<<180° では sin0>0であるから, ① より cos0<0 ゆえに sin0-cos0 > 0 ② ①から (sin0-cos0)^=1-2sin/cos0= 12/10 -√²/²=4 tan 0- 1 sin0-cos0= 1 tan 0 = .. 1+2sinocos0= ① sin cos 0 cos o sin 8 (sin0+cos0) (sino-cos 0) sin²0-cos²0 sinocoso 00000 sinocos0 [類 広島修道大] 1 tan 0 √2 - 42.16+ (-1)=-2/3 √6 = -2√3 |基本 27,140 ab や '+b²のように, a と を入れ替えてももとの式と 同じになる式を, a bの対 称式という。 <「‥.」 は 「ゆえに」 を表す記 号である。 ◄sin³0+cos³0 = (sin0+cos0) 3sin/cos0 (sin0+cost) から求めてもよい。 - 1/ <0. sinocos0=- sin0>0であるから cos 0 < 0 sin 0 cos 0 <tan0= sin 0, cos 0 の式に直す。 求めた sin @cos 0 sin0-coseの値を利用。 を利用して,

回答募集中 回答数: 0
数学 高校生

この問題の(1)と(2)の回答の赤いところからなぜその式になるのかが分かりません。降べきの順は分かりますが、まとめ方が意味不明です😵‍💫😵‍💫 1問でもいいので、丁寧に解説していただけると助かります!!

次の式を因数分解せよ。 (1) a(b+c)²+b(c+a)²+c(a+b)²-4abc (2) x(y²-2³)+y(2²-x²)+z(x² - y²) CHART & SOLUTION 対称式・交代式の因数分解 1つの文字について降べきの順に整理する どの文字についても次数は同じ。 どれか1つの文字に着目して整理する。 (1) a²+a+● (2) x2+x+ 解答 (1) a(b+c)²+b(c+a)²+c(a+b)²-4abc&& =(b+c)a²+{(b+c)2+2bc+2bc-4bc}a+bc2+b'c =a(b+c)2+b(c2+2ca+α²)+c(a²+2ab+b2)-4abc1 =(b+c)(a+b)(a+c) =(a+b)(b+c)(c+α) Sans@sto ‚a+ð ‚ð+o 〔(2) 鹿児島経大 ] ●a²+a+ =(b+c)a²+(b+c)a+bc(b+c) 04648 (b+c)が共通因数。 =(b+c){a²+(b+c)a+bc} caについて降べきの順に整 和 : a + b→b+c→c+a 差:a-b→ b-c→c-a 積 : ab→bc→ca 基本 14,15 15-016-5)= た い ←これを答えとしてもよい。 輪環の順に整理。 CFR (2) x(y²-2²)+y(22-x2)+2(x²-y2) othis (ds) +1d理する。 (- =(-y+z)x2+(y²-22)x+yz²-y'z =-(y-z)x2+(y+z)(y-z)x-yz xについて降べきの順に整 (y-z) =-(y-2)(x²-(y+z)x+yz} KOST & =-(y-z)(x-y)(x-2). これを答えとしてもよい。 =(x-y) (y-z) (z-x) -=d+"p-dp輪環の順に整理。 ●x²+x++ (y-z) が共通因数。 INFORMATION 3つの文字についての式は,なるべく輪環の順に書くようにすると 式が見やすく、書き落としや間違いを防ぐことができる。 8x TOG'S a. 1章 (6) D 2 因数分解

未解決 回答数: 1
数学 高校生

因数分解なのですが最初の降べきの順に直すところが分かりません。細かく式書いて教えて欲しいです🙇‍♀️

発展例題 250 次の式を因数分解せよ。 (1) a²(b+c)+ b²(c+a)+c²(a+b)+2abc (+12x+1+ (2) a²(b-c)+b²(c-a)+c²(a−b) CHARI & GUIDE N 基礎例題 18, 解答 1) (5)=(b+c) a²+(b²+2bc+c²) a+b²c+bc² =(b+c)a²+(b+c)²a+bc(b+c) ¹) 1) =(b+c){a²+(b+c)a+bc}2) ① a について整理する。 α 以外の文字 6, c は数として扱う。 ② Oa²+□+△の形となる。 公式やたすきがけを利用する。 数が同じ場合 多くの文字を含む式の因数分解 次数が同じ場合 まず、 1つの文字について整理す =(b+c)(a+b)(a+c) =(a+b)(b+c) (c+a) 2) (5)=(b-c)a²-(b²-c²) a+b²c-bc² =(b-c)(a−b)(a-c) 2) =-(a-b)(b-c) (c-a) 発展例題 21 FT_3>85TS 1) b+cが共通因数 (+)=(1+2) 掛けて bc, (x(1+2x)}{x+b+c となる2数 ←輪環の順(p.23)に。 ++税) デストー =(b-c)a²-(b+c)(b-c) a+bc(b-c) 3)+²x)) {x\ 2) 3) + ³x)} (x² - ( =(b-c){a^²-(b+c)a+bc}* 8+50 複雑な 発 bc (1 ( 3) b-c が共通 (+) (4) 掛けてbc., b-cとなる b-c -a-c=-(c- ←輪環の順に。 (8+x) (+3)=(8+1)(1+1)= within Lecture 対称式と交代式 s)(6+) 上の例題の (1) のように, a,b,cのうちのどの2つの文字を入れ替えても、も じになる式を, 3文字の対称式という。 また, (2) のように, a,b,cのうちの 文字を入れ替えても, もとの式と符号だけが変わる式を, 3文字の交代式とい 3文字の対称式、交代式の因数分解については CRE

未解決 回答数: 1
1/4