学年

質問の種類

数学 高校生

(2)を解答とは違う、垂直条件を二回使って連立方程式を作る解き方をしましたが、2枚目の右下のbの値が違います。どこで間違えたのでしょうか。 何回も見直しましたが、どこで間違えているかわかりませんでした…

• 10 外心 三角形ABCの3辺の長さをAB=4, BC=3, CA=2 とする.この三角形の外心を0とおく. (1) ベクトル CA と CB の内積 CA・CB を求めよ. (2) CO=aCA + 6CB をみたす実数 α, b を求めよ. 外心の求め方 外心の定義 (OA=OB=OC) を用いて求めてみよう. 例題では|OA|=|OB2=|OC|2 を CA, CB, a, b で表して a, b を求め ればよいのであるが,素直にOA=CA-CO=(1-4) CA-6CBとして 計算すると式が膨れてしまう. (信州大・理一後) |OA|=|CA-CO|=|CA|2-2CA・CO4 | CO 2 としておくことがポ イントで,これがCO2に等しいことから2CA・CO-|CA | となる。 これに CO=aCA+bCB を代入する(aとbの関係式が得られる)。 0 B 同様に|OB|=|OCからもαとの関係式が得られ,この連立方程式を解けばよい. 解答 (1)|CA-CB|=|BA|2であるから, |CA2-2CA・CB+|CB|=|BA|2 ..22-2CA・CB+32=42 CA·CB= 22+32-42 2 3 == 2 e CA ACT=0 A (2) 0から A, B, Cまでの距離が等しいので, |OA|=|OB|=|OC|2 ..|CA-CO|=|CB-CO|=|CO|2 .. |CAP-2CA・CO+|CO|=|CB|2-2CB・CO+|CO|=|CO|2 最左辺 =最右辺, 中辺=最右辺より, 2CA·CO=|CA|2, 2CB・CO=|CB|2 これらにCO=CA+6CB を代入すると, 2(a|CA2+6CA•CB)=|CA|2, 2 (aCA•CB+6|CB|2)=|CB |2 (1)で求めた値などを代入して, 3 2{a·4+6 (-2)}-4, 2{a⋅(-1)+6-9)=9 ∴.8a-3b=4 .......... ①, -3a+186=9 ②÷3よりa=66-3...... ③ で,これを①に代入すると 8(66-3)-3b=4 28 .. 45b=28 .. b = 45 28 11 これを③に代入して, α=6· -3= 45 15 COR=0 C. (c) 問題文の CA, CB を見て,Cを 始点に書き直す。 =0 CA (CA - PCA + CD) - CAP) CA +&CB=0 この式は次のようにして導くこ ともできる. 2 A 0 CACO=CA・CO・cos/Cである. 0 から CAに下ろした垂線の足を Hとすると,HはCAの中点で Cocos ∠C=CH=CA/2 よって, CA·CO=CA·CH=CA2/2 CB・COも同様. 10 演習題(解答は p.27 ) △ABC において AB = 1, AC=2と1 /BAC=

回答募集中 回答数: 0
化学 高校生

(2)のアについて、複素数の一直線上の条件で一方のk倍とする解き方があったと思うんですが今回はそうするとb=-2となり異なってしまうんですが何故でしょうか?

58 基本 例題 30 線分のなす角、平行・垂直条件 複素数平面上の3点A(a), B(B), C(y) について (1)a=1+2i, b=-2+4i, y=2-ai とする。このとき、次のものを求め。 (ア) α=3のとき, ∠BAC の大きさと △ABCの面積 (イ) α=16のとき, ∠CBA の大きさ (2) α=-1-i, β=i, y=b-2i (b は実数の定数) とする。 (ア) 3点A,B,Cが一直線上にあるように, 6の値を定めよ。 (イ)2直線AB, AC が垂直であるように, 6の値を定めよ。 指針> <BACの偏角∠Bay = arg a-B r-β y-a B-a (ア) △ABCの面積は (1) (ア) であるから, (1) (イ) Y-α β-a r-a β-α を計算し, 極形式で表す。 y-a β-a に注目する。 (2) p.41 の基本事項 3 ② ③ が適用できるように, まず (ア) Y-α B-a p.41 基本事項 ③ の計算で出てくるβ-α, y-α の値を使うとよい。 が実数 (BAC= 0 または ² ) (<BAC=) Bay A(a) -AB AC sin ∠BAC ここで,AB=|β-al, AC=|y- y-a B-a ■C(y) を計算し ○重要 ・B(β) CHART 線分のなす角、直線の平行・垂直偏角∠Bur=arg/p-a r-a となるように, b の値を定める。 が活躍 (イ) a=16 のとき, y=2-16i であるから α-β_ 1+2i-(-2+4i) Y-B 2-16i-(-2+4i) 3-2i 4-20i (2) (3-2i)(1+5i) 1+i 4(1-5i)(1+5i) 8 -√2(cos+isin) Y-α β-a よって, ∠CBA の大きさは 8 (b-2i) (−1−i)_6+1-i = i-(-1-i) (b+1-i)(1-2i)_b-1-(2b+3)i よって b=- π 3 2 4 cos ZCBA= 1+2i B (8) A(a) ① (1+2i)(1-2i) 5 (ア) 3点A,B,Cが一直線上にあるための条件は, ① が実数 となることであるから 26+3=0 よって (イ) 2直線AB, AC が垂直であるための条件は, ① が純虚 数となることであるから 6-1=0 かつ 26+30 ゆえに b=1 BA・BC |BA||BC| O C(7) x 181 ∠A=arg THIENS 20 ZAO (イ)にも利用できるよう に, ∠BACについて調 べる。 da kria? 検討 ベクトルの問題として考える 複素数平面上の点p+gi を座標平面上の点(b, g) とみると,次のようにベクトルの知識を用 いて解くこともできる。 (1) (1) A(1, 2), B(-2, 4), C(2, -16) 3Ł BADA BA=(3, -2), BC=(4,-20)=4(1,-5) z=x+yi において y=0z は実数 x = 0 かつ y = 0 08:BA ⇒zは純虚数 4{3×1-2×(-5)} (3²+(-2)²×41²+(-5) ² √√2 59 1章 4 複素数と図形

回答募集中 回答数: 0
数学 高校生

空欄テ,ト、ナ,ニ、ヌ,ネ,ノについてです。 2枚目にも書いているように、私は両辺に6を掛けてから計算したのですが、項数求めるところでn²>1428となり答えがあいません。何が間違えているのか分からないのでよろしくお願いします。見にくくてごめんなさい。

数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) 次のように、1から始まる1個 2個 3個の奇数の列を順に並べてできる 数列 1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, ... U 5個 1個 2個 3個 4個 を {an} とする。 この数列を、次のように群に分け、順に第1群, 第2群,第3群, ..….とする。 1 |13|1,3,5 |1,3,5,7|1,3,5,7,91, ….. 第1群 第2群 第3群 第4群 第5群 ここで,nを自然数とするとき,第n群はn個の項からなるものとする。また, jkを自然数とし、第n群に含まれる項α)と同じ値の項が,第1群から第n群ま でにちょうどk個あるとき, 第n群に含まれる項a, を 「k回目に現れる α;」のよ うに表現する。例えば、第5群の2番目の項である3は数列{an}の第12項であり, 「4回目に現れる3」 のように表現する。 1.3.5.7 +2+2 (配点20) (1) 第n群の最後の項をnを用いて表すと は数列{an}の第 である。 とき回目に現れる1は数列{an}の第 21 { n (l+n) Shinti 10回目に現れる1は数列{an}の第市 項である。また,kを自然数とする 第9項さいごは、anの3×9×10=45 1 1 -k²- オ) カ = k (k-1) + 1 = = = K²=-=- k + 1 項である。 第n群に含まれる項の和は に現れる1までの和は 1 ケ (-1)(1+R-1)+1 -k³ 項である。 +1 -k² + =1+(n-1)2=20-2+1 であり, 1回目に現れる = n 1 サ =20-1 であるから、数列{an}の初項からk回目 n(x+2n-1)=½nxxn = n² =k+/ =k+ */ //(k-1)(2R-2+1) (数学ⅡⅠ・数学B 第4問は次ページに続く。) -32 + (k-1)k (2k-1) 11 ( ア の解答群 On-1 1 ク (n-1)² Ⓒ/n(n-1) ②n+1 76 (2) を自然数とするとき、1回目に現れる3は第 の解答群 (同じものを繰り返し選んでもよい。) ①n² ② (n+1)^ Ⓒ/ n(n+1) ⑤/1/21(n+1 +1)(n+2) ⑩ 1/12n(n-1)(2n-1) ⑦/1/n(n+1)(2x+1) ③ / (n+1)(n+2)(2n+3 ) あり, N ヌネノである。 3 2n-1 2022 ({R-ÉR) (²k-1)/12138 2 2 ~ 3 k²³² - / k²= 1/k² + (k = {K² - {k² + ék 110 21 220 2310 目の項であり、数列{an}の第 チ ·(1+0) 31+z²+2 f (3) 数列{an}の初項から第n項までの和をSとする。 S>2023 となる最小のn をNとすると、数列{an}の第N項 αN は第 群のナニ番目の項で 第群に含まれる項の和r². 初項から最後までの保和は、 ////(m+1)(2m+1 数学ⅡⅠ・数学B -1² + 42n+1 タ グマ ス ·1+ 群の to 番 2 項である。 17万 {m(mer) (2mi+1) >2023 6m(+1)(2nit1) (m+1)(24ct() >1 m=18のとき12654> 121 m=1710710 <120 x 1934×12 1386

回答募集中 回答数: 0
1/4