学年

質問の種類

物理 高校生

教えてください🙏

18 リピートノート物理② リピートノート物理② 19 10 確認問題(1) 17問 月 ②この定在波の波長はいくらか。 26 波の伝わる速さ 水面を波が伝わっている。この波の隣りあう山の間隔は2.0mである。水面に小さな 浮きを浮かべると 10s間で5回上下に振動した。 ただし、浮きが最も高い位置に来たときから再び同じ 位置に来るときまでを1回の振動とする。 次の問いに有効数字2桁で答えよ。 (センター試験改) □ ③ 弦を伝わる波の速さはいくらか。 □ (1) この波の波長はいくらか。 □(2) この波の周期はいくらか。 ■ (3) この波が伝わる速さはいくらか。 27 重ね合わせの原理 左下の図は、お互いに逆向きに進む2つのパルス波のある時刻における波形を表 している。この後、2つのパルス波がそれぞれ矢印の向きに3目盛り進んだときの合成波の波形を右下の方 に作図せよ。 (センター試験改) 位 0 位 20 (2) おもりや弦は(1)と同じままで,振動数を小さくして基本振動をさせた。 ①このときに生じる定在波の波長はいくらか。 □②このときの定在波の振動数はいくらか。 ただし、おもりや弦を変えない場合は、 波の伝わる速さも変 わらない。 30 気柱の共鳴 管楽器は、管の口に息を吹きつけたときに生じる気柱の共鳴を利用して音を出す。 管内の 気柱の共鳴について,次の問いに答えよ (数値は有効数字3桁)。 ただし, 音の速さを341m/sとし、開口端 補正は無視できるものとする。 (1) 図1のように細長い管を用意し、 管の一端の近くに振動数∫[Hz] の音源を置く。 音源の振動数を0Hzから徐々に大きくしていくと, f=440 [Hz] で初めて共鳴が 生じた。 ①管の中に生じている定在波の波形を, 右の図に作図せよ。 ②このときの音の波長はいくらか。 笛の 管の長さ 10 (センター試験改) 図1 音源 細長い管 0 位置 0 位置 うなり バイオリンのある弦をはじくと, 振動数440Hz のおんさの音よりわずかに低い音がした。 バ リンの弦をはじくと同時におんさを鳴らしたところ, 0.5sの周期でうなりが聞こえた。 このとき,次の (センター試験改) v = fd 341= 440 A λ = s間に生じるうなりの回数はいくらか。 □③ 管の長さはいくらか。 のときに弦が発した音の振動数はいくらか。 (2)次に, 図2のように、同じ管の一端を手で閉じて同様の実験を行う。 音源の振 動数を0Hzから徐々に大きくしていくと. ある振動数のときに初めて共鳴が生 じた。 図2 音源 □ ① 管の中に生じている定在波の波形を. 右の図に作図せよ。 振動 図のように軽い弦を, 端Aで振動片につけ, 端Bでは しておもりをつるした。 次の問いに答えよ。 ■片を60Hzの振動数で振動させると, AB間 (長さ1.5m) に3 をもつ定在波が生じた。 のときの固有振動を, 何振動というか。 □ ② このときの音の波長はいくらか。 ③このときの音源の振動数を答えよ。

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学の教科書で「非相対論的な計算では付加定数を適当に取るのでε=hνから求めたνの値にはあまり意味がない」とはどう言う意味ですか? この教科書ではεをエネルギー、hをプランク定数、νを振動数としています。

12 p=√2meV となり (1) の第2式から陰極線の波 長入は 1 量子力学の誕生 h h Þ √2me V と計算されることがわかる. me に数値を代入すれば, i= 入= 150 A (1Å=10-10m) V 14 1-8図 Si 単結晶 (111) 表面の低速電子 線回折写真(入射エネルギー 43eV) ( 村田好正氏 (東京大学名誉教授) によ る) となる. V~100Vの程度では陰極線 の波長は1Åの程度になる. この程度の波長の彼ならば, X線と 同様に, 結晶内に規則正しく並んだ原 子によって回折現象を起こすはずである. 事実 , アメリカのデヴィッスンと ガーマーはニッケルの単結晶で電子線を反射させ,X線のときと同様な干渉 図形を得た (1927年). また, わが国の菊池正士は薄い雲母膜で, イギリスの トムソンは薄い金属膜で,電子線の回折像を得て,ド・ブロイの予言の正し いことを実験的に立証した. ド・ブロイの原論文では,相対論的考察が用いられているが,p=h/入は 以下の非相対論的な議論でもそのまま使われるエネルギーの方は,普通の 非相対論的な計算では付加定数を適当にとるので,ε= hv から求めたの値 そのものにはあまり意味がない. しかし、 実際に測定値と比較されるのはい つもショー vmという差の形になるので、不定の付加定数を気にする必要はない. §1.4 波動力学の形成 よく知られているように張られた弦や膜とか管内の空気の振動のように 有限の範囲内に局在する波は定常波 (固有振動) をつくり, そのときの振動 数 5

回答募集中 回答数: 0
1/4