学年

質問の種類

数学 高校生

まるで囲った2枚目の式が分かりません💦

(2)ある地域のタクシー会社のタクシー料金は、最初の1kmまでが500円で,そ の後は走行距離に応じて100円ずつ加算される。また,目的地に到着したときに 支払う料金を運賃という。 H ~90円 近年、キャッシュレス決済 (現金を使用せずにお金を払う方法) への対応やド ライブレコーダーの設置, アルコール検知器を用いた検査の義務化などによりタ クシー会社の負担が増したため、 来年から次のように運賃を改定することを検討 している。 【キャッシュレス決済の場合】 目的地に到着後の運賃を3%増額し、100円未満の金額を切り捨てた金額を 改定後の運賃とする。 【現金払いの場合】 目的地に到着後の運賃を3%増額し、100円未満の金額が50円以上のときは その金額を100円に切り上げ, 50円未満のときは100円未満の金額を切り 捨てた金額を改定後の運賃とする。 改定前に6000円だった運賃について、 改定後の運賃は 103 キャッシュレス決済の場合はイウ×100円 6000x leg 現金払いの場合はエオ×100 円 ・60x103 6180 となる。 =6100 運賃の改定後に200円の値上げとなるような改定前の運賃の範囲は (+200)円 xx100 キャッシュレス決済の場合はカキ×100円以上 クケ ×100円以下 103 (x+200)×100 現金払いの場合は コサ×100円以上 シス×100円以下 103x+206 100 である。 運賃の改定後にキャッシュレス決済と現金払いの差が最大となるような改定前 の運賃のうち、最小の運賃はセソ ×100円である。 キャッシュしす

回答募集中 回答数: 0
数学 高校生

135の解き方が分かりません。 まず黄色の所から分かりません。

--o x X3 ce =f(x)) -=g(x) x の 小値 (x) の 最大値 sin 60° COS60°y 6 COS 0= BC √10 AB 1 tan 0= AC 3 回転 する B 4章 1 C 8 3 'A 練習 x=6sin60°=6・ √3 2 -=3√3 ←sin 60°= √3 から 2 2 cos 60° y=6 cos 60°-6=310 「練習 「三角比の表」 を用いて, 次の問いに答えよ。 134 (1) 図 (ア) で, x, yの値を求めよ。 ただし 小数第2 位を四捨五入せよ。 (2)図 (イ)で,鋭角0 のおよその大きさを求めよ。 (1)x=15cos 33°=15×0.8387=12.5805 y=15sin33°=15×0.5446=8.169 小数第2位を四捨五入して x≒12.6, y≒8.2 =0.92307≒0.9231 で, 三角比の表から (ア) 12 (2) cos = 13 cos22°=0.9272, cos 23° = 0.9205 ゆえに、23° の方が近い値である。 よって 0≒23° 153 33° (イ) 13 ←三角比の表から cos33°=0.8387 sin33°=0.5446 13 [図形と計量] 練習 海面のある場所から崖の上に立つ高さ30m の灯台の先端の仰角が 60°で,同じ場所から灯台の 135 下端の仰角が30°のとき,崖の高さを求めよ。 崖の高さをhm とすると, 海面のある 場所から灯台までの水平距離は [ 金沢工大 ] h =h(mm) tan 30° また、海面から灯台の先端までの高さ は (30+h)m である。 60° よって,図から tan60°= 30+h 30° √3h ゆえに √3 30+h √3 h 100g+ 30m ←tan 30°= 10200 h 水平距離 hm 0m EI 0.200円

回答募集中 回答数: 0
数学 高校生

数学、図形と計量の問題です。 花子さんの方(ⅱ)の解答の5行目あたりからの意味がわかりません。どなたか解説お願いします🙇

(ii) 花子さんの求め方について考えてみよう。 △ABCの外接円の半径をR とすると AB=2RX I である。 また BH=2RX オ CH=2R × カ S= 2 BCX BC2 × であるから, BC=BH+CH より R をBC と B C を用いて表すことができる。 よって AB × BC sinB sinB sinC (2) cosBsinC + sin Bcos C である。 I の解答群 sin B ①sinC 1 1 sin B sin C 1 cos B cos C cos B cos C オ の解答群(同じものを繰り返し選んでもよい。) sin B sin C cos C cos B cos C sin Bcos C ③ cos Bsin C cos B sin B sin B sin C ⑦ sin C cos C cos B ⑧ 1 sin B sin C cos Bcosc (2)太郎さんと花子さんは,求めた式の形が異なることを疑問に思った。次の①~③のう ち ① ② の式について正しく記述しているのは キ である。 キ の解答群 ①の式のみ、△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ①②の式のみ,△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ② ① ② の式ともに, △ABC が鋭角三角形でないときに面積Sを求められない ことがある。 ①と②の式は同値なので,△ABC の形状にかかわらず面積Sを求めることが できる。 3

回答募集中 回答数: 0
数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
1/19