学年

質問の種類

数学 高校生

まるで囲った2枚目の式が分かりません💦

(2)ある地域のタクシー会社のタクシー料金は、最初の1kmまでが500円で,そ の後は走行距離に応じて100円ずつ加算される。また,目的地に到着したときに 支払う料金を運賃という。 H ~90円 近年、キャッシュレス決済 (現金を使用せずにお金を払う方法) への対応やド ライブレコーダーの設置, アルコール検知器を用いた検査の義務化などによりタ クシー会社の負担が増したため、 来年から次のように運賃を改定することを検討 している。 【キャッシュレス決済の場合】 目的地に到着後の運賃を3%増額し、100円未満の金額を切り捨てた金額を 改定後の運賃とする。 【現金払いの場合】 目的地に到着後の運賃を3%増額し、100円未満の金額が50円以上のときは その金額を100円に切り上げ, 50円未満のときは100円未満の金額を切り 捨てた金額を改定後の運賃とする。 改定前に6000円だった運賃について、 改定後の運賃は 103 キャッシュレス決済の場合はイウ×100円 6000x leg 現金払いの場合はエオ×100 円 ・60x103 6180 となる。 =6100 運賃の改定後に200円の値上げとなるような改定前の運賃の範囲は (+200)円 xx100 キャッシュレス決済の場合はカキ×100円以上 クケ ×100円以下 103 (x+200)×100 現金払いの場合は コサ×100円以上 シス×100円以下 103x+206 100 である。 運賃の改定後にキャッシュレス決済と現金払いの差が最大となるような改定前 の運賃のうち、最小の運賃はセソ ×100円である。 キャッシュしす

回答募集中 回答数: 0
数学 高校生

解き方を教えて下さい!お願いします

重要 1 1辺の長さが2である立方体 ABCDEFGHの辺ABの中点をMとする。 線分 MGの長さはア∠DGM=イウ であるから, △DGMの面積は 3 図形と計量 で ある。 また, 四面体 CDMG を考えると,その体積は オ となり, 頂点Cか カ ら平面 DGM へ下ろした垂線 CP の長さは キ ク である。 POINT! 空間図形 - 垂線の長さ 平面図形を取り出して考える (断面図も有効)。 四面体の高さと考え、 体積を利用。 錐体 (四面体, 円錐など) の体積 ×(底面積)×(高さ) 3 解答 辺EFの中点をN とすると, D ◆三平方の a C 定理 b MI a2=62+c2 P C CA △NFG において、 三平方の定理により NG=√/FG2+NF2=√22+12=√5 AMNGにおいて、 三平方の定理により MG=√NG2+MN2=√(√5)2+22=73 △DGM において, MD=NG=√5,DG=√2°+2°=2√2 であるから, 余弦定理により ◆△MNGを取り出す。 E N 2 F M √5 D =1/23・S・CP ·S.CP よって、1/13-1/2.3. また,四面体 CDMG の体積 V は, △CDM を底面とすると 2= ・・△CDM・CG= V-13ACDM・CG=1/31 (1/2・2・2)・2 - 4 3 オ 3 この四面体を,△DGM を底面として体積を考えると 4 cos∠DGM= 32+(2√2)-(√√5)² 3 2√2 1 2.3.2/2 √2 よって ゆえに, △DGMの面積Sは ∠DGM=イウ45° S=1/2・3・2√2 sin 45°=1/2・3・2√2 1/12 =13 ◆△DGM を取り出す。 取り 出した図形を別に図にか くとよりわかりやすい。 ← cos DGM.d _MG²+DG2-MD2 2MG DG 基 22 MG DG sin ZDGM S=1 2 0 基 23 1 3 ← x(底面積)×(高さ) ≠4 •3•CP から CP=3 1 ◆CP を高さと考える。 体積 は同じ。 x(底面積)×(高さ) 3 練習 11 右の図のような直方体 ABCDEFGH において, AE=√10, AF=8, AH=10 とする。 A D B E ウ H このとき,FH=アイ であり, cos∠FAH= であ I F る。また,三角形AFHの面積はオカキ である。 したがって, 点E から三角形 AFHに下ろした垂線の長さ G コ は である。 Lin サ

未解決 回答数: 0
数学 高校生

135の解き方が分かりません。 まず黄色の所から分かりません。

--o x X3 ce =f(x)) -=g(x) x の 小値 (x) の 最大値 sin 60° COS60°y 6 COS 0= BC √10 AB 1 tan 0= AC 3 回転 する B 4章 1 C 8 3 'A 練習 x=6sin60°=6・ √3 2 -=3√3 ←sin 60°= √3 から 2 2 cos 60° y=6 cos 60°-6=310 「練習 「三角比の表」 を用いて, 次の問いに答えよ。 134 (1) 図 (ア) で, x, yの値を求めよ。 ただし 小数第2 位を四捨五入せよ。 (2)図 (イ)で,鋭角0 のおよその大きさを求めよ。 (1)x=15cos 33°=15×0.8387=12.5805 y=15sin33°=15×0.5446=8.169 小数第2位を四捨五入して x≒12.6, y≒8.2 =0.92307≒0.9231 で, 三角比の表から (ア) 12 (2) cos = 13 cos22°=0.9272, cos 23° = 0.9205 ゆえに、23° の方が近い値である。 よって 0≒23° 153 33° (イ) 13 ←三角比の表から cos33°=0.8387 sin33°=0.5446 13 [図形と計量] 練習 海面のある場所から崖の上に立つ高さ30m の灯台の先端の仰角が 60°で,同じ場所から灯台の 135 下端の仰角が30°のとき,崖の高さを求めよ。 崖の高さをhm とすると, 海面のある 場所から灯台までの水平距離は [ 金沢工大 ] h =h(mm) tan 30° また、海面から灯台の先端までの高さ は (30+h)m である。 60° よって,図から tan60°= 30+h 30° √3h ゆえに √3 30+h √3 h 100g+ 30m ←tan 30°= 10200 h 水平距離 hm 0m EI 0.200円

回答募集中 回答数: 0
1/35