学年

質問の種類

数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0
情報:IT 高校生

カで0からスタートした場合なぜj-1になるのですか?

目標 重要テーマを確実におさえよう! テーマ3 データの分析に関するプログラミング 例題:外れ値の扱いについて,箱ひげ図の場合は四 分位範囲の1.5倍を 「ひげ」 の長さの上限に して、その長さから外れるものを外れ値とす るという考え方がある。 外れ値がある場合 ひげを短くする 7個のデータ [-100 20 30 40 50 60,1000] のうち,外れ値を除外して平均値を求める以下の〈プ ログラム〉を作った。 この〈プログラム> では, 元 のデータ7個が配列 Data[0], Data[1], 四分位範囲 の1.5倍 四分位範囲 Data[6] に格納されており,第1四分位数を q1, 第 3 四分位数を q3 とし,四分位範囲はアで表せる。そして, 外れ値を除いたデータは 配列 Data_c[0], Data_c[1], ... に格納するものとする。 なお, すべての配列の添字は0か ら始まるものとする。 (1) Data=[-100,20,30, 40, 50, 60, 1000] (2) Data_c = [0,0,0,0,0,0,0] (3) q1=20 (4) g3=60 (5) j=0 (6) iを0からイ まで1ずつ増やしながら繰り返す : (7) | もし Data[i] = ウ and Data[i] <= エ ならば : (8) | | Data_c [j]=Data[i] (9) L L j = オ (10)s=0 (11)を0から カまで1ずつ増やしながら繰り返す: (12) L s = s +Data_c[i] (13) 表示する(キ) <プログラム> 空欄 ア ~ キに最も当てはまるものを, 次の解答群から一つずつ選べ。

未解決 回答数: 1
情報:IT 高校生

外れ値とならなかった個数をカウントした場合なぜj=j+1になるのですか?

テーマ3 データの分析に関するプログラミング 例題:外れ値の扱いについて,箱ひげ図の場合は四 分位範囲の1.5倍を 「ひげ」 の長さの上限に して、その長さから外れるものを外れ値とす るという考え方がある。 外れ値がある場合 ひげを短くする 四分位範囲 の1.5倍 四分位範囲 7個のデータ [-100 20 30 40 50,60,1000] のうち、外れ値を除外して平均値を求める以下の〈プ ログラム〉を作った。この〈プログラム〉では,元 のデータ7個が配列 Data[0], Data[1], Data[6] に格納されており,第1四分位数を q1 第 3 四分位数を q3 とし、四分位範囲はアで表せる。そして, 外れ値を除いたデータは 配列 Data_c[0], Data_c[1], … に格納するものとする。 なお、すべての配列の添字は0か ら始まるものとする。 Data=[-100,20,30, 40,50,60,1000] Data_c=[0,0,0,0,0,0, 0] q1=20 g3 = 60 (1) (2) (3) (4) (5) j=0 (6) i を 0 から イ まで1ずつ増やしながら繰り返す: (7) | もし Data[i]>= ウ and Data[i] <= エ ならば: (8) | Data_c[j] = Data[i] (9) LLj = オ れる。 (10) s=0 (11) iを0から カ まで1ずつ増やしながら繰り返す : (12) L s = s +Data_c[i] (13) 表示する(キ) ~ <プログラム> 空欄 ア キに最も当てはまるものを,次の解答群から一つずつ選べ。

未解決 回答数: 0
数学 中学生

答えは選択肢5なのですが、IVがなぜ読み取れるのかわからないです。第三四分位数で1日は確実に言えると思うのですが、他に30部屋の時があるのか読み取り方がわからないです。教えてください!

(イ) ある観光地の近くに1軒の旅館があり、この旅館の部屋数は40である。 下の図2は、この旅館に おいて,翌月の1日から30日までの30日間のそれぞれの日に,何部屋の予約が入っているか,その 予約数をまとめたものを,それぞれヒストグラムと箱ひげ図で表したものである。 ただし, ヒストグ ラムは0部屋以上5部屋未満,5部屋以上10 部屋未満などのように, 階級の幅を 5部屋にとって分 けている。 このヒストグラムと箱ひげ図から読み取れることがらを,あとのI~Vの中からすべて選んだとき の組み合わせとして最も適するものを1~6の中から1つ選び、その番号を答えなさい。 図2 ヒストグラム (日) 876543210 05 10 15 20 25 30 35 40 (部屋) 箱ひげ図 (1) 10 10 20 30 40 (部屋) A イ 予約数が35 部屋以上の日数よりも予約数が10部屋未満の日数の方が多い。 予約数の四分位範囲は16部屋である。 Ⅲ.予約数の中央値は23部屋である。 IV. 予約数が30 部屋の日数は1日である。 V. 予約数が4部屋の日は1日もない。 of 1 I, II II, IV 18 HTI, II, V この固定 3. I, III, IV 831 5. III, IV, V 6. III, V C

回答募集中 回答数: 0
1/34