学年

質問の種類

物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
数学 高校生

倍数の判定法について 写真 2枚目の疑問にお答えいただきたいです。

まとめ いろいろな倍数の判定法 p.426 の基本事項」で紹介できなかったものも含めて、いろいろな倍数の判定法をまと めておこう。 2の倍数 3の倍数 4の倍数 5の倍数 6 の倍数 7の倍数 8の倍数 一の位が0.2.4.6, 8のいずれか(一の位が2の倍数) 各位の数の和が3の倍数 下2桁が4の倍数(00含む) 一の位が0.5のいずれか(一の位が5の倍数) 2の倍数かつ3の倍数 一の位から左へ3桁ごとに区切り、奇数番目の区画にある3桁以 下の数の和と、偶数番目の区画にある3桁以下の数の和との差が 7の倍数 (下3桁が8の倍数(000含む) 9の倍数 各位の数の和が9の倍数 10の倍数 一の位が0 11の倍数 一の位から見て, 奇数番目の位の数の和と, 偶数番目の位の数の 和との差が11 の倍数 4 13 約 数と倍数 これらの倍数の判定法のうち,7の倍数と11の倍数について,具体例で紹介しよう。 ●7の倍数の判定法 98076328において, a=98,b=76,c=328 とすると 98076328=qX 10°+6×10+c ここで =(106-1)a+(103+1)b+(a+c)-b 10°-1=9999997×142857, 10°+1=1001=7×143 I 7の倍数 よって, (a+c)-6が7の倍数ならば,98076328は 7の倍数である。 ここで (a+c)-b=(98+328)-76=350=7×507の倍数 したがって,980763287の倍数である。 ●11 の倍数の判定法 92807において, a=9, 6=2,c=8,d=0, e=7 とすると 92807=α×10+6×10°+c×102+d×10+e 3桁ごとに区切ると 98076328 a b c (a+c)-6が7の 倍数ならば、 98076328は 7の倍数である。 =(10^-1)a+(10°+1)+(102-1)c+(10+1)d+(a+c+e)-(b+d) ここで 10^-1=9999=11×909, 102-1=99=11×9. 10°+1=1001=11×91, 10+1=11 11 の倍数 よって, (a+c+e)-(b+d) が11の倍数ならば, 92807 は 11 の倍数である。 ここで (a+c+e)-(b+d)=(9+8+7)-(2+0)=22=11×211 の倍数 したがって, 92807 は11の倍数である。

回答募集中 回答数: 0
1/57