学年

質問の種類

生物 高校生

答えがなくて合ってるのか分からないので教えて頂きたいです💦 サッと書いたもので字が汚なく、みにくく、ごめんなさい💦

2 次の図は,光学顕微鏡で観察した細 胞の構造を模式的に示したものである。 (1) (ア)~(オ)の名称を, 次の (a)~(e)から選べ (a) 葉緑体 (b) 細胞壁 5 (C) 細胞膜 (d) 核 (e) ミトコンドリア (2) (1) (a)~(e)のうち, 原核細胞では見ら ウ れないものを3つ選べ。 (3) 真核細胞からなる生物を、次の (a)~(f)からすべて選べ。 10 (a) 大腸菌 (b) ゼニゴケ (C) 乳酸菌 (d) ゾウリムシ (e) 酵母 (f) ネンジュモ (ア) (1) (ア) (イ) (ウ) H (エ) (イ) (オ) (2) (3) p.25,28~29 (オ) 15 3 生物とエネルギーに関する次の文章を読み, 以下の問いに答えよ。 生物は、外界から取り入れたエネルギーを, 生命活動に利用できる形に変 換して利用している。 植物は(a)を,動物は食物に含まれる(b)を取 り入れ、有機物を体内に蓄えている。 有機物に含まれるエネルギーは,(c) という物質に含まれる (b) に変換され, 生命活動に利用される。 (1) 文章中の空欄に当てはまる適当な語句を ① ~ ④から1つずつ選べ。 3 (1) (a) (b) (c) (2) (ア) (イ) (ウ) ① 化学エネルギー ② 光エネルギー ③ ATP p.34 ~41 ④ グルコース (2) 右図は (c)の模式図で, (ア)は塩 210 基, (イ)は糖を示している。 (ア)~ (1) (ウ) ウ (ウ) (ウ)に当てはまる物質名を答えよ。 次の図は, 光合成と呼吸における物質の変化とエネルギーの移動を模式 的に示したものである。 光合成 呼吸 ATP 有機物+ (イ) ATP エネルギー エネルギー エネルギー (A) +リン酸 水+ (ア) (A) +リン酸 (1) (ア)(イ)に当てはまる物質名を答えよ。 生命活動への利用 25 (2)(A)は,ATP からリン酸が1個外れた物質である。 (A)の物質名を答えよ。 (1) (ア) (イ) (2) 5 ⑤ 次の文章のうち、正しいものには○誤っているものには×をつけよ。 (1) (1) 酵素は,タンパク質と基質が結合してできている。 (2) (2) 酵素は反応の前後で変化しないため, くり返しはたらくことができる。 (3) 過酸化水素は,カタラーゼに対して触媒としてはたらく。 30 (4) ミトコンドリアには,細胞の呼吸に関する酵素が存在する。 (3) 34 (4) 1章 p.38~42 p.44~46 51

回答募集中 回答数: 0
数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
1/54