学年

質問の種類

数学 高校生

三角関数の問題です。 赤く囲んだところが分かりません。 よろしくお願いします。

63 図形の計量と加法定理の利用 三角形ABCにおいて, AC=3, ∠B=z, <C=8-7 とする。ただし, 0 は cos0=- << を満たす角とする。 (1) sin= であり, 8についての不等式が成り立つ。 ウの解答群 © <<* ① ②くく ③ << (2) sin ∠C= であり、AB=キ+√ク] である。 [ (3)辺BC上に, BAD 120 となるように点D をとることができる。このとき、 ケコ + サ AD= である。ただし、コシ とする。 各 (1)<6πより, sin0 0 であるから sin 0 = √1-cos² = √1-(-3)=√ 0 √2 sin-sin-sin = 2 1 2 2 24 sin= ....... ① 6 = sin-27- ...... ② 6 ① ④ 3 √18 sin -π= ..... ③ 6 -1 10 sin1 = ......④ <Point 大小関係は②>①>③>であるから / <<1/2(①) (2) 加法定理により sin ∠C = sin 0- sin(0-3) sincosmo-cos sin / B /6 = △ABCにおいて, 正弦定理により AB AC in (0-1) AB sinc 3 3+√6 6 2 3+√6 AB = 6• O <-114- 2 J2 こう解く! LLA STEP 不等式から問題解決のための 1 構想を立てよう ①~③で与えられている角を 正弦の値に置き換えて比較す る。 STEP 図をかいて、適切な定理を用 ②いよう 与えられた条件を図で表すと, 向かい合う辺と角が2組ある ことに気づくだろう。 このよう なときは, 正弦定理を用いる とよい。 A 分母を6にそろえて比較する。 B 加法定理 sin (a-B) =sinacos β-cosasinβ C 角度の情報が多い三角形に対し ては、 正弦定理を用いるのが有 効である。 9+3x

回答募集中 回答数: 0
数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

回答募集中 回答数: 0
1/10