学年

質問の種類

数学 高校生

線を引いている①の式が分からないのと、右側にある丸の印を付けている30というのが分かりません、。なんでtan90度ではないんですか? 解説お願いします🙇‍♀️

226 基本 例 135 測量の問題 00000 | 目の高さが1.5mの人が,平地に立っている木の高さを知るために, 木の前方の |地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45°であった。 木の高さを求めよ。 指針 p.222 基本事項 2 基本 133 基本 ① 与えられた値を三角形の辺や角としてとらえて,まず図をかく。そして、 ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では,三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 基本 例題 1 右の図の△AF に垂線 ADI AD=DC, AI (1) 線分AD (2) sin 75°, fast 点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい 下にあるならば俯角という。 ぎょう A 仰角 俯角 三角比 特に, の比を (1)ㄥ 形 き CHART 30° 45° 60°の三角比 (2) -30° 三角定規を思い出す 2 45° √3 (1) △ 60 45% 解答 ZA △A 右の図のように, 木の頂点を D, 木の根元をCとし 解答 目の高さの直線上の点を A', B', C' とする。 h=(10+x)tan 30° このとき, BC=x (m), C'D=h(m) とすると ① h=xtan45 A' 30° B45° ②から 1.5ml x=h これを①に代入して A 10m B xm 10+h h= ゆえに √3 (√3-1)h=10 ①,②はそれぞれ 10 よって h=- √√3-1 10(√3+1) (√3-1) (√3+1) 10(√3+1) tan 45°= =5 (√3+1) 2 したがって、求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m)(*) 注意 この例題のような, 測量の問題では, 「小数第2位 を四捨五入せよ」などの指示がある場合は近似値を求 め、指示がない場合は計算の結果を、 そのまま (つま 上の例題では根号がついたまま) 答えとする。 tan 30°= /30° 45% 60°の三角比の 値は覚えておくこと。 (*) 31.73から 5√3=8.65 よって、538.7 とすると 5√3+6.58.7+6.5 =15.2(m) √3 tan 30% h h から ここで x tan45°=1 10+x’ 練習 海面のある場所から崖の上に立つ高さ30mの灯台の先端の仰角がG 135 よ よく L. △ か <カ (2) 練習 ③ 136

回答募集中 回答数: 0
数学 高校生

ペンで囲っている部分の変形が何故こうなるのかわからないです…教えてください。

O 24 ◯◯ 三角比の利用 Style 15 ある地点Aから木の先端Pの仰角を測ると30° であった。 また, 木 に向かって水平に10m進んだ地点BからPの仰角を測ると45°で あった。この木の高さを求めよ。 [06 産能大] 右の図のように木の高さをPQ=h(m) とおく。 Key 三角比を用いて △APQ は直角三角形であるから P AQ, BQ をんで表し、 (6- PQ tan 30°= AQ 大 AQ=AB+BQ から, ん を求める。 PQ 130° 45° ゆえに AQ= tan 30° A 10m B Q =√3h (m) また, △BPQも直角三角形であるから tan 45°= _ PQ BQ PQ ゆえに BQ= =h (m) tan 45° [参考] △BPQ は直角 二等辺三角形であるから, BQ=PQ=hとして, 10 したがって h=- = よって, AQ=AB+BQ より √3-1 (√3-1) (√3+1) √3h=10+h BQ を求めてもよい。 10(√3+1) 10(√3+1) 2 5√3+5(m) Same ある地点Aから塔の先端Pの仰角を測ると30°であった。 次に, 塔 Style 15 に向かって水平に15m進んだ地点BからPの仰角を測ると60°で あった。 塔の高さ PQ を求めよ。 [06 岐阜経大 ] ●Complete 29 10分 30 20分 *29 △ABCにおいて, 辺BC上に点Hがあり, 線分AH と辺BC は垂直であ るとする。 AB=√13, AH=3,BC=7 のとき, sin B, cosCの値を求めよ。 [08 愛知工大] 30 傾斜が 30°で一定の坂の頂上に塔が立っている。 坂のふもとからこの塔の 先を見ると, 水平面に対して 45°の角度に見えた。 坂を斜面に沿って塔に向 かって 30m 進んだA点から再び塔の先を見ると, 水平面に対して 60°の角 度に見えた。

解決済み 回答数: 1
数学 高校生

(1)の回答で、OC2が何故正方形の対象軸になるかわからないです。教えて下さい

110 第3章 図形 2の正三角形OAB と3つの二等辺三角形 COA, C2AB, Cabo 1辺6の正方形 PQRS の折り紙がある。 下図のように、 以下の問いに答えよ.ただし, AB は PQ と平行とする。 をかいて切り取り, 三角錐を組み立てることにする.このとき、 63 立体と展開図 (1) 辺ABの中点をM, 直線ABと辺 QR の交点をDとするとき、 6 MD, BD の長さを求めよ。 S (2) CD, BC の長さを求めよ.. (3) 三角錐において, Cから △OABに下ろした垂線の足 をHとするとき, CHの長さ を求めよ. (4) 三角錐 C-OAB の体積V を求めよ. 精講 P A27B D C2 空間図形を考えるときの基本は, できるだけ平面図形としてとらえること R Satin C3 A STSMARTCO だから、立体と展開図の2つをにらみながら解答をつくっていきます (1),(2) まず,必要な部分だけをぬき出した図をかくことが大切です。 次に,直角がたくさんあるので,直角三角形をみつけて, 三平方の定理 三角比の利用を考えます (61). (3) 四面体 C-OAB の条件から, C から底面に下ろした垂線の足Hは△OAB の外心です (62) , △OABは正三角形なので, Hは重心でもあります。 ま た, 垂線を下ろしているので, (1), (2)と同様に直角三角形に着目します。 解答 (1) OC2 は正方形の対称軸で,Mは線分 OC2 上にあるので, MD=123×6=3 MB = 1 だから, BD=3-1=2 (2)△OACと△BAC において C A M あ BA国道 B B

回答募集中 回答数: 0
数学 高校生

なぜ(√3-1)h=10になるんですか?? 何回考えても分からなくて泣

20 10 基本例題132 測量の問題 (1) 目の高さが1.5mの人が, 平地に立っている木の高さを知るために, 木の前方の 地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45° であった。 木の高さを求めよ。 p.206 基本事項 ② 基本 131 指針 ① ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では, 三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 ②から h= そして, 与えられた値を三角形の辺や角としてとらえて,まず図をかく。 注意点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい, 下にあるならば俯角という。 CHART 30°, 45°,60°の三角比 三角定規を思い出す 解答 右の図のように, 木の頂点を D, 木の根元をCとし 目の高さの直線上の点をA', B', C' とする。 このとき,BC=x(m), C'D = h (m) とすると h=(10+x)tan 30° (1) (2) これを①に代入して ゆえに (√3-1)h=10 h=xtan 45° x=h 10+h √√3 ...... Ora 10 10(√3+1) よって h= √3-1 (√3-1)(√3+1) したがって 求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m) (*) DA+TA A-a -=5(√3+1) Cys=1A\=30 >=2 800円 DA 注意 この例題のような, 測量の問題では,「小数第2位を 四捨五入せよ」などの指示がある場合は近似値を求め, 指示がない場合は計算の結果を、そのまま(つまり,上の 例題では根号がついたまま) 答えとする。 2 1.5ml A A KONSOL 30° ay tal √3 10 60° 0 1 基本 167 A' 30° B'/45° 俯角 仰角 √√2 45° ①,②はそれぞれ tan30°= h 10+x' から。ここで tan 30° = 1 45° 1 10m B xm 1 ・P D tan 45°= P' hm koth h x tan45°=1 (S) /30°45° 60°の三角比の値は 覚えておくこと。 209 (*)/3≒1.73 から 5√3=8.65 よって, 53 8.7 とすると 5√3 +6.5≒8.7+6.5=15.2(m) 4章 5 三角比の基本 15

未解決 回答数: 1
1/5