学年

質問の種類

数学 高校生

この問題の(2)の解答の最初の式についてなんですが、右辺にyを移行しているのに符号が変わっていないのはなぜですか?誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

例題 34 絶対値を含む不等式の証明 次の不等式を証明せよ、 (1) a + b≦|a|+|6| (2)|x|-|y|≦|x +yl え方 絶対値を含むので,このまま差をとるよりも。 例題29のように, 両辺を平方して差をとれば よい. A≧0. B≧0 のとき,A≧B A'ZB である また, AZA の性質を利用する. A≧0 のとき, |A|=A **** <絶対値の性質> A (A≥0) A= -A (A<0) ||A|³=A² ・|A|| B|=|AB | ||A|≧0|A|≧A,|A|≧-A A<0\è\, \A\>0, A<0} |A|>A) ·|-A|=|A| (2) (1)の不等式を利用する. |x|-|y|=|x+y| x|≦x+y+y|であることから,|x|≧|x+y|+|y|を示す (1)|a+b|≧0 |a|+|6|≧0 より 平方して比べる. (|a|+|6|)-la +612 =|a|2+2|a||6|+|6|2-(a+b)2 =α°+2|ab|+b - (a +2ab + b) =2|ab|-2ab=2(|ab|-ab) ここで|ab≧ab より, |ab-ab≧0となる. よって、不等式 |a+b|≦|a|+|6|が成り立つ. (2)|x|=|x+y-y|=| (x+y)+(-y) | とすることが (x+y+(-y)|≦|x+y|+|-y| できる. (1)より, =|x+y+ly| したがって, |x|≦|x+y|+|y| よって,不等式|x|-|y|≦|x+y| が成り立つ. us |a|20|6|≧ より |a|+|6|20 |A|'A', |A||B|=|AB\ |A|≧A を利用す A=ab と考える. (1)の結果を利用 a=x+y, b=-y || を左辺へ移 |A|>|B| の証明 | A|-| B|^=A-B'>0 を示す ■> 例題 34(1) は (面倒であるが) 次の場合に分けて証明することもできる。 (i) a≥0, b≥0, a+b≥0, (ii) a<0, b<0, a+b<0, (iii) a≥0, b<0, a+b (iv) a≥0, b<0, a+b<0, (v) a<0, b≥0, a+b≥0, (vi) a<0, b≥0, a+■ (2)は,(i) |x|-|y|<0 (ii) |x|-|y|≧0 の場合に分けて証明することもでき ■(1),(2)より |a|-|6|≦la+b|≧|a|+|6| が得られる. これを三角不等式という.

解決済み 回答数: 1
数学 高校生

2531の問題において、なぜこの変形ができるのでしょうか。

ZXK -TT Cos=sin= 13 複素数平面 基本 22) るのはどんな場合か。ただし20 Pi (21) - zo) 180° 解答 (1) 21+222=122+12 +2r20001-4 であるから(問題2529) 121221=VP12+122+2172cos(01-02) =V (2)|21 + 22|=2+122+2200(01-02) VT12+2222 (-1 cos(01-02)≤1) =|72|+|2|=|21|+|22| (3)上の不等式で等号が成り立つのは または 20で cos(01-02)=1のとき よって, 等号は 10 または 22=0または と 01) 研究 複素数平面上で 21, 22および2+を 点をそれぞれP1, P2 およびPとする。 原点O と P1, P2が一直線上にあるとき, PA じ直線上にあって, OP1, OP2 が同じ向きな で 01-02=360°xn(n=0, 1, 2, ...) のとき、 (3x+ya+aẞ) 11 Br 1 + + Y a a (a++) (By+a+a)(a+3+2) (7)(1/+/+/1/1) a =(a+B+2)(B)+ya+αβ) R2 R2 By+ya+aß k=a+B+71 (By+ra+aβ)(By+ra+aβ) とおくと20 ? (a+B+)(a+B+) (y+ya+aß) (7+7+āß) (a+B+1)(a+B+7) = R² 与式==R ド・モアブルの定理 § 1. 複素数平面 よって、nを負の整数とし, n=-mとおけば 803 (cos0+isin0)"={(cos0+isin0)''}" ={cos(-0)+isin(-0)}" mは正の整数であるから {cos(-0)+isin(-0)}'' = cos(-me)+isin(-m0) ∴. (cos0+isin0)"=cosn0+isin no 2533. 〈ド・モアブルの定理〉 基本 nは正の整数で,=1であるとき 0 がどのような実数値であっても (cosO+isin0)" =cosno+isinne が成り立つことを,数学的帰納法によって 証明せよ。 -2532. 〈ド・モアブルの定理〉 基本 解答] n は整数であるから OP=OP1+OP2 ..|21+22|=|21|+|22| OP1, OP2 が反対向きならば (1) (cosa+isina)(cosβ+isinβ) 次の等式を証明せよ。ただし,i=V-1 とする。 (cos0+isin0)" =cosnl+isinn0 において, n=1のとき x(cosy+isiny) OP=OP1 ~ OP2 ...|21 +22|=|21|~|22| =cos(a+β+y)+isin(a+β+y) O. P1, P2 が一直線上にないときPOP を2隣辺とする平行四辺形の頂点で (2) nが正の整数のとき OP1 ~ PiPOP < OP1 +P,P 2 P.POP2 であるから sin 02 ) |21|~|32|<|21 +22| <|21|+|22| P1 3 1) ① ② ③ をまとめて |21|~|22|≦|21+2 | =1+22], |31|+|22| -011 る る。 基本 この結果を三角不等式ということがある。 2531. 〈複素数の絶対値> (cos a + isina) (cos a2+ i sin a2) ...(cos an+isinan) (cos0+isin0)=cosno+isinno (1) (cosa +isina) (cosβ+isinβ) = (cos a cosẞ-sina sin ẞ) + i(sinacos β + cosasin β) = cos(a + β)+isin(a+β) :: {cos(a +β) +isin(a+β)}(cosy+isiny) = cos{(a +B)+r}+isin{(a +B)+y} =cos(a+β+2)+isin (a +β+7) (2) (1) と同様にして ①の左辺 = cose+isin0 ①の右辺 = cos0+isin0 よって、この場合, 等式① は成り立つ。 n=kの場合、①の成立を仮定すれば (cos0+isin0) = cosk0+isink0 (cosQ+isin0)k+1 (cos0+isin0) (cosQ+isin0) = (cos0+isin0) × (cosk0 +isink0 ) = (cosocosko-sin Asink0) +i (sin Acosk0 + cos0sink0 ) =cos(k+1)0+isin(k + 1)0 ......2 ②はn=k+1の場合も等式①の成り立つことを 示している。 よって、数学的帰納法により①はnが どんな正の整数でも成り立つ。 2534. 〈n 乗の計算〉 基本 複素数平面上において、原点を中心とす る半径Rの円周上の3点を複素数o.d で表すとき By+ya+aß la+B+7l の値を求めよ。 ただし, a + β+7 キ によって する。 成立す [解答 点α, B, は点Oを中心 半径Rの円上 にあるから a=|a|=R2 同様にβ・万=・=R2 = cos(a1+a2++an) isin(a1+a2+・・・+αn) ここでa=a2=...=an=0とおけば (cos0+isine)" =cosn+isinno 研究ド・モアブルの定理はn が 0 または負の整 数のときも成り立つ。 =0のとき明らか。 n=1のとき (cos +isin 0) cos 0-isin 0 (coso+isino) (coso-isin0 ) = cos(-0) + isin(-0) 次の式の値を求めよ。 (cos 15°+isin 15°) 2535 〈n 乗の計算〉 解答 与式 = cos(15°×6)+isin(15°×6)=i 基本 √3+i=r(cos0+isin0) に適するr, 0 を求め、それによって(√3+i)の値を計 算せよ。ただし,r> 0 とする。 解答 V3 +i=rcos0+irsin0 から rcos0v3rsin0=1 2式を平方して辺々を加えると

解決済み 回答数: 1
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
1/22