学年

質問の種類

物理 高校生

3枚目のエネルギー保存の式を図で描き、そこからXminを求めようとしたのですが上手く行きませんでした。 グラフが間違っていますか? 正しいグラフを教えてください🙇‍♀️

図のように, 滑らかな水平面上に質量Mの小物体Bが置かれ, その右方には, ばね定数kの軽い ばねが取り付けられた質量mの小球Cが置かれている。 いま, Bの左方から質量mの小球Aが速さ ひ でBに向かって運動し衝突した。 A, B, C の運動はすべて同一直線上で行われ, 空気の抵抗は無視で きる。また, A,B間の反発係数はe として,次の問に答えよ。 ただし, 速度, 力積等のベクトル量は, 図の右向きを正とする。 A (1) 0 m-eM m+M vo ②00 10 問1 衝突直後の A, Bの速度をそれぞれ, Vとする。 これらを求めよ。 1 V = 2 772 eM m+M ① V. 5 V 6 -Vo ② V (3 m k Vo ハイレベル物理 前半 第4講 チェックテスト V (6) M m+ M. mM k(m + M) 問2 衝突の瞬間, A B から受ける力積を求めよ。 3 mM (1) mvo (2) -mvo -Vo m+ M m (m-eM) m+M em - M m+M 6 ③3 -Vo -Vo em m+M M(em-M) m+ M 4 V (6) V -V 7 B 4 ③V M m m+M (1+e) M m+M -Vo -vo 7 問3 B がばねと接触している際、 ばねが最も短くなるときのBの速度を求めよ。 4 M m+M m m+M mM √k(m-M) 4 問4 問3のとき, ばねの自然長からの縮みはいくらか。 5 ® V√ √ M ④V ②V m+M k -Vo V mM m+ M (1+e)mM, (m + M)² 100000 V (1+e)mM m+M (8) ⑦V -Vo (1+e)m m+M 8 -Vo 8 m-M k -Vo m √k(m + M) (1-e) mM y (m+M)² C (1+e) mM m+ M m ⑧ V. -Vo M √k(m + M)

回答募集中 回答数: 0
物理 高校生

問3の問題で、右向きに速度uを置いたので、設問の設定時にはuが負の速度として出てくると思ったのですが正でした。 なぜでしょうか? 教えてください🙇‍♀️

図のように、滑らかな水平面上に,質量Mの小物体Bが置かれ, その右方には, ばね定数kの軽い ばねが取り付けられた質量mの小球Cが置かれている。 いま, Bの左方から質量mの小球Aが速さvo でBに向かって運動し衝突した。 A, B, C の運動はすべて同一直線上で行われ, 空気の抵抗は無視で きる。また, A,B間の反発係数はe として,次の問に答えよ。 ただし,速度, 力積等のベクトル量は, 図の右向きを正とする。 A 10 (5 m-eM m+M 1 mvo ⑤ 衝突直後のA,Bの速度をそれぞれ”, Vとする。 これらを求めよ。 1 2 (5 -Vo m eM m+M m(m-eM) m+M V 5) V. ③③ -mvo -Vo 6 3 問2 衝突の瞬間, AがBから受ける力積を求めよ。 mM m+M (6 20 mM k(m + M) ハイレベル物理 前半 第4講 チェックテスト DV√TH OV√ m ① V. ② V. k m+M em - M m+M 6 (③3) -Vo em m+ M M V k -Vo (4) 6 V M(em-M) m+M -V (7) V (4 m m+M B -Vo M (1+e) M m+M -Vo 問3 Bがばねと接触している際, ばねが最も短くなるときのBの速度を求めよ。 M 10 2 V m+M m m+M fetal. 問4 問3のとき, ばねの自然長からの縮みはいくらか。 -Vo mM √k(m-M) 4 3 V m+M V k -V 3 (1+e)mM (m+M)2 -Vo mM m+M V (1+e) mM m+M 8 5 4 V ⑦V ooooo -V0 (1+e) m m+M Vo (8) -Vo (1-e) mM (m + M)² m-M k m √k (m + M) V C (1+e)mM m+M ⑧V m 4 Vo M √k(m + M)

解決済み 回答数: 1
数学 高校生

意味が分かりません。 どこから5が出てきたんですか?

目 6:15 0.75x 10 ヘル数学IAⅡB" 高1・高2ハイレベル数学IAIIB 第6講 三角比(1) 標準画質 ▲ 00:00 RECRUIT 第6講 三角比(1) 2 1 2√5 √5 高1・2 ハイレベル数学ⅠAⅡIB テキスト解答 ①11 [1] 右図のような直角三角形 ABCにおいて, 頂点Aから 辺BCに下ろした垂線と辺BCとの交点をDとする. AB > AC, BC=5, AD=2 とするとき, sin B, cos B の 値を求めよ. = よ. (1) cos A, tan A 3 三角 第6講 ' (1) cos A = √5 tan A = 3 (2) B=90°-Aより sinB=cosA=¥5 チャック △ABDACBA SACAD より BD: AD = AD CD つまり BD: 22:CD よって BD・CD=4 ここでBD=x とおくと CD=5x したがって x (5-x) =4 x-5x+1=0 x=1,4 ここで AB AC より DB > DA かつ DA > DC ゆえに BD DC であるから BD=4,CD=1 三平方の定理より AB=√ 4 +2=2√5 よって sin B= cos B= 2.0x 速度 1.00x 2 √5 2 4 2√5 √5 = C=90° である三角形ABCにおいてはAは鋭角. SinA= 12/23 より AB: BC:CA=3:2:√5 (2) sin B. cos B. tan B. cos B=sin A = 3 ① [2] ∠ACB=90°の直角三角形ABC で, sinA=1/3 のとき、次の三角比の値を求め 1 tan B= B' tan A 1辺の長さが8である正五角形の1つの内角の大きさは (180°×3) ÷5=108° よって右図の二等辺三角形ABCにおいて. 頂角Aの二等分線と辺BC が交わる点をHとすると. ∠ABH=36° √√5 2 4G 98分 B 10 したがって BH=ABcos36°=8cos36° ゆうに求める対角線の長さけ RH=16cne 36°= 16×∩ 8000=12 Q44 5 36° 19:29 口コ 2 [1] 1辺の長さが8である正五角形の対角線の長さを求めよ。 ただし、必要ならば cos36°= 0.8090 を用いよ. 第6講 H B 108° ×

未解決 回答数: 0
英語 高校生

写真の文の赤線部についてですが、go wa beyondは 〜をはるかに超えるという目的語を伴う他動詞と同じ意味だと思うのですが、この文にはgo way beyondの目的語がないのですが、go way beyondに自動詞意味もあるのですか?

2200 Other studies show V show that people [who exercise less than the recommended amount], and those [who go way beyond(in time and intensity)], see moderate benefits). 2 It's (only when you are training (to 10 4 1 it is ... that ~ の強調構文 the level of an elite athlete)) that exercise can (actually) interfere (with sleep S quality). 3 “High-level athletes, [who may overtrain (for a certain event)], do S have issues [with sleep] (when traveling and under stress), Youngstedt said. 2 con u 副詞節中の<S' + be 動詞〉 の省略 But (for the vast majority of us), that's not a factor." C ME 2 訳 1 他の研究によって、推奨量より運動量の少ない人や、推奨の時間や強度をはるか に超えて運動している人にも、 そこそこの効果が見られることが示されている。 運動が実 際に睡眠の質を妨げ得るのは, (実は) 一流の運動選手レベルでトレーニングをしている場 合のみである。 「特定の大会のために過度な練習を行うことのあるハイレベルな運動選手 は、移動中やストレスを感じているときによく眠れないことがあります」 とヤングシュタ ットは述べた。「しかし、私たちの圧倒的多数には当てはまりません」

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

やさしい理系数学例題3(2)整数分野の証明問題です。 模範解答の意味は理解できますが、16で割ったあまりで分類しようと考えるに至る過程がわかりません。

あり、その最大数はab である。 この定理について興味のある方は, 「ハイレベル理系数学」の例題3と演習問題 14 を参照されたい. 例題 3 正の整数a,b,cが a+b2=c2 をみたすとき,次の (1), (2), (3) を証明せよ . (1) a, b のいずれかは3の倍数である. (2) a,b のいずれかは4の倍数である. (3) a,b,cのいずれかは5の倍数である. 考え方 任意の整数は, 3m, 3m±1 (mは整数) などの形で表せる. 【解答】 (1) 任意の整数は3m,3m±1 (m∈Z) のいずれかの形で表せ, (3m)2 = 0, (mod3) (3m±1)²=1. よって, a, b がともに3の倍数でないとすると, ∫(a2+62)÷3の余りは,2 lc²÷3の余りは, 0,1 であるから, a2+b2=c2 となり矛盾. ゆえに,d2+b2=c2 のとき, a, 6 のいずれかは3の倍数である. (2) 任意の整数は 4m, 4m±1,4m+2 (mez) のいずれかの形で表せ , (4m)²=8.2m² = 0, (4m±1)²=8(2m²±m)+1=1,9, (mod16) (4m+2)^2=8(2m²+2m)+4=4. よって, a, b がともに4の倍数でないとすると, 背理 (a²+62)÷16の余りは, 2, 5, 8, 10, 13 lc²16の余りは, 0, 1,4,9 (5m)2 =0, (5m±1)' = 1, (mod5) (有名問題 ) (5m±2)²=4. よって, a,b,cがすべて5の倍数でないとすると, (終) なぜood 16 で分類しょうと 考える 光に平方数で割った余りを であるから, a+b2=c2 となり矛盾. ゆえに,a+b=²のとき, a,b のいずれかは4の倍数である. (3) 任意の整数は 5m,5m±1.5m±2(m∈Z) のいずれかの形で表せ, (終)

未解決 回答数: 1
1/13