学年

質問の種類

数学 高校生

(2)の解答にあるaはどこから来たのか教えて欲しいです!! あと、剰余たの定理でこのページのポイントにある 「f(x)をg(x)h(x)でわったときのあまりをR(x)とする」剰余の定理のどういう時に使えるか教えて欲しいです!

第2章 基礎問 44 第2章 複素数と万住式 26 剰余の定理 (III) 1/2 (1) 整式P(x) をæ-1, x-2, x-3でわったときの余りが、そ れぞれ6, 14, 26 であるとき,P(x) を (x-1)(x-2) (x-3)で わったときの余りを求めよ. (2) 整式P(x) を (x-1) でわると, 2x-1余り, x-2でわると 5余るとき,P(z) を (x-1)(x-2)でわった余りを求めよ。 精講 (1) 25 で考えたように、余りはax2+bx+cとおけます。 あとに a, b, c に関する連立方程式を作れば終わりです。 しかし、3文字の連立方程式は解くのがそれなりにたいへんです そこで,25の考え方を利用すると負担が軽くなります。 (2)余りをax+bx+c とおいてもP (1) P(2) しかないので, 未知数 3つ 等式2つの形になり, 答はでてきません. 解答 (1) 求める余りは ax2+bx+c とおけるので, 128 -2a-2b+26=6 -24-6+26=14 [a+6-10=0 l2a+b-12=0 .. a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 45 S ( 注 (別解)のポイントの部分は,P(3)=R(3) となることからもわ かります. (2) P(x) を (x-1)(x-2) でわった余りをR(x) (2次以下の整式) と おくと,P(x) = (x-1)(x-2)Q(x) +R(z) と表せる. ところが,P(x) は (x-1)2でわると2-1余るので,R(x) も (x-1)2でわると2x-1余る. よって, R(x)=a(x-1)2+2x-1 とおける. .. P(x)=(x-1)(x-2)Q(x)+α(x-1)'+2x-1 P(2) =5 だから, α+3=5 a=2 よって、 求める余りは, 2(x-1)'+2x-1 すなわち, 2x²-2x+1 次式でわった余り P(x)=(x-1)(x-2)(x-3)Q(x)+ax²+bx+c は2次以下 と表せる. P(1)=6,P(2)=14,P(3) = 26 だから, [a+b+c=6 4a+26+c=14 ・・・① ....2 連立方程式を作る ポイント f(x)をg(x)h(x)でわったときの余りをR(z) とす ると f(x)をg(x)でわった余りと R(x)をg(r)でわった余りは等しい。 (h(x) についても同様のことがいえる) 9a+3b+c=26 ......

解決済み 回答数: 1
数学 高校生

sin x /x→1の証明について 円を用いた面積比較からのはさみうちを使って証明する方法(一枚目)が有名ですが、微分係数の定義に当てはめる(二枚目)のはダメなんでしょうか? sin xのグラフの原点の傾きという意味なのですごく単純です

[証明] とし,∠ABC = 0 とする.この B 3 のグラ CD lim- 8-082 表しています。 とを を求めよ. かり記憶しておきましょう。 この大小関係は、よく利用されるものなのでしっ y=sin.x 12 0 三角関数に関する極限のうち、最も重要であるのは次の極限です . この定理を用いて, lim sin.x lim 110 I sin.x 1-0 I =1であることを示しましょう. [証明 ] x→0 とするから, 0<|x|<1としてよい。 この公式を証明するための準備として、次の定理の成立を示しておきましょう。 0<x< 10 において, sin.z<x<tanzi sinr<r<tanr の各辺を sin.x(0) で割って, 1<x 1 sinx COS.X ∴. 1> sinx > COS I I 図のように, 半径1の単位円周上に∠AOB=x (x は弧度法の角) となるように2点A, B をとる. lim cos.x=1であるから, はさみうちの原理により +0 このとき面積について, 点Aにおける円の接線と半直線 OB との交点をT とする. B. sinx lim =1 ......① 次に, 2 IC x+0 t< <<0のとき、x=-t とおくと << であるから,①より、 sinx sin(-t) sint IC lim lim- lim- =1 0115 x t+0 -t t+0 t △OAB <扇形 OAB < △OAT が成り立つ. それぞれの面積をx を用いて表すと ①.②より. 1 2 sinr<<tanr 1 2 0-(-x+x) mil lim sinx TC x0 =1 なる.したがって, 0<x<2/27において、 no inil が成り立つ. sinr<r<tang 薫り立つ. (証明終わり) この極限公式は,xが十分に小さい (0に近い)とき, sinx≒x であることを表しています.

解決済み 回答数: 2
1/78