学年

質問の種類

数学 高校生

(2)数学的帰納法を使うとどういう回答になりますか?

基礎問 45 はさみうちの原理(Ⅱ) 数列{an} は 0<a1 <3, an+1=1+√1+an (n=1, 2, 3, ... をみたす ものとする。このとき,次の(1),(2),(3)を示せ. (1) n=1,2,3, ・・・ に対して, 0<an<3 よって, n≧2 のとき, 3-a.<(3-an-)<()(-a)<<()(3-a) 78 79 \nl (2) n=1,2,3, に対して, 3-an≦ (3) liman=3 精講 11-0 (1) 漸化式から一般項を求めないで数列の性質を知りたいときま ず数学的帰納法と考えて間違いありません。 (B (2)これも (1) と同様に帰納法で示すこともできますが、 「台」を 「=」としてみると,等比数列の一般項の公式の形になっています。 (3)44 のポイントの形になっています。ニオイプンプンというところでしょう。 解答 (1)0<a<3………①を数学的帰納法で示す. mir (i) n=1 のとき, 条件より 0<a< 3 だから, ① は成りたつ. (ii)n=k(k≧1) のとき, 0<ak <3 と仮定すると, 1 <ak+1<4 .. 1<√1+ak<2 n=1のときも考えて, 3-ans \n-1 (3-a) (3)(1),(2)より 0<3-ans()(3-as) 前に不等式証明 あるので匂いプンプン 11-00 ここで, lim はさみうちの原理より (3- = 0 だから, 42 lim (3-am)=0 liman=3 参 考 43 でグラフを利用して数列の極限 を考えました.今回は, 38の復習も 兼ねて, グラフで考えてみます。 (a) y=x as aa y=f(x) y=f(x)=1+√1+x と y=xのグラフを かき, α1 を 0<x<3 をみたすようにとれば, a2, a, ・・・と, どんどん3に近づいていく様 子が読み取れるはずです . (an) d a 3 10 I ポイント 一般項が求まらない数列{an} に対しても lima は, 次の手順で求めることができる ① anのとりうる値の範囲をおさえる 第4章 両辺に1を加えて 2<1+1+ <3 .. 2<ak+1 <3 よって, 0<ak+1 <3 が成りたつ. (i), (ii)より, すべての自然数nについて ① は成りたつ. (2) an+1=1+√1+an3-an+1=2√1+αn まず,左辺に3+1 (右辺)= (2-√1+am)(2+√1+αn) 2+√1+an をつくると (1)より,1<√1+am<2の両辺に2を加えて3<2+√1+an <4 両辺の逆数をとって1/1 3-4 >0 だから, 2+√1+an 3 3-a (3-an) 2+√1+an3 ∴.3-an+1 < ÷(3- ② liman(=α) を予想する →80 ③ |an+1-α|≦klan-α (0<k<1) の形に変形し て, はさみうち 3-an 2+√1+an <右辺にも3-αがでて くる 演習問題 45 xn²+2 √2+1= 1, 2, ...) で表される数列{rn} に 2.xn ついて 次の(1),(2),(3)を示せ. (1) √2+1<In (2) n+1-v (2) (3)lim=√2 8012

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

⑶で右側に小さく書いてある⑵に繰り返し用いるとはどういうことですか? あと最後のlim|an-3|=0でどうしてliman=3になるんですか?

2 例題17 漸化式と極限 (3) ( a=1, an+1=√2a+3 (n=1,2, 3,) ......) で定義される数列{an} について,次の問いに答えよ. (1) 数列{an}が極限値 αをもつとき,α の値を求めよ. (2)(1)のαについて, la,-allan-α を示せ .na (3) lima=α であることを示せ . [考え方] TAN 解答 11-0 P (1) lima=α のとき, liman+1=α であるから, 1140 1148 これを与えられた漸化式に代入して考える. 求めた αが条件に合うか確認が必要 (2) (1)で求めたα を代入し,漸化式を用いて不等式の 左辺を変形する. LAM (3) 実際に lima" を求める. はさみうちの原理を利用する。 21-0 赤客室 ぜったい④ (1) lima=α とすると 漸化式 an+1=√2a+3より 両辺を2乗して, 03/ **$²9 +1 はさみうち使う時 左辺が正って = An 16 S α=-1 は ①を満たさないから, (2), lax+1-31 = √/2a₂+3 -31-01-20 +3-=-3 M/(2a+3)-91 1 √2an+3 +3 ②. lim2(12/3) 12・ n1 → ∞ liman=liman+1=α なので、 1200 12 534 a = √2a+3 ① 11 → 00 α²=2a+3 より, lim|a-3|=0 √2an a=3 -12an -61 ...... a=-1, 2 √2an+3+3 -lan-31≤an-31 3 ここなくす いいたいために 絶対値記よって、lamm-31 / 3 14.31 は成り立つ。 F.DE (3) (2)より10-31≦0/2/31lan-1-31 × ここで、a=1 より 0a-312 (23) 2 An-1 2\n-1 n-1 (²) Ian-2-31 ≤...(3) |a₁-31 ai Coll= = 0 とはさみうちの原理より, **** YA y=x/ J O a2a3 i=1 もどき 120m+3+3 120+3分子の有理化 11 →∞ よって, lima =3 となり、題意は成り立つ 22100 $=0 お二期間 y=√2x+3 無理方程式 (p.98参照) x a²-2a-3=0 (a+1)(α-3)=0 α=-1, 3 が ① を満 たすか確認する. 第1章 特性方程式 みたいにauthous をdとかおいて、 √2a+3≧0より, √2an+3+3≥3 √2an+3+3 101. 1 3 1200) (2)をくり返し用いる. |a-3|=|1-3| =|-2|=2

回答募集中 回答数: 0
数学 高校生

⑶でどうしてx=1/1+hとおいていいんですか?

3 第1章 例題12 はさみうちの原理 (3) a=1+h (h>0) とおくとき、 次の問いに答えよ. (nは自然数) n(n-1) h²を示せ . (1) (1+h)">l+nh+ 2 =0 を示せ (1hi (2) lim; 11-00 n a" 考え方 (1) (1+h)" を二項定理で展開し, 1, nh, h)₁ = 1th 8-1 が何を表しているか考える。 2 (2) (1) で示した式とはさみうちの原理を利用する. (3) monx" より 1/12 x を関連させることを考える。 解答 (1) 二項定理より,n≧2 のとき, (1+h)"="Co+,Cih+++ Cmh" ≧,Cot,Ch+,Cahe =1+ nh+ これは,n=1のときも成り立つ。 n(n-1) ここで, 1100 よって, (1+h)" ≧1 + nh+ 2 a" n(n-1) (2)(1)より,α"=(1+h)" ≧1+nh+ 2 るから、 両辺の逆数をとって,両辺にnを掛けると ① lim →∞ =lim 2100 limnx"=limn よって, (3) 0<x<1のとき, limnx" = 0 を示せ . 2100 11 → 00 n(n-1), 1+nh+ -h² 2 n 1+nh+ + h N n(n-1) 2 n 11 limnx"=0 + -h² n n(n-1) ² 2 1 n 0 よって, ①,②とはさみうちの原理より lim- n n→∞o a" (3) h>0 より,a=1+h>1 であるから, 0<x<1 よ り、x=- (0)とおくと、(2)より, 10mil h² n/ 2 =lim 1140 -=0 (1+AS)(-AS) n→∞0 が成り立つ. 200 h²>0 であ n (1+h)" =lim- 114 0 mil n (2) lim 次の極限値を求めよ.ただし,nは自然数とする. x n 3" (1) limg" 1100 n! -=0 -=0 Think (a+b)" =Coa" Cia 例題 次 n a" う。 ++C₁ »Co=1, „Ch=n „C₂h²= n(n-1) | h² 2 (与式の右辺を表して いる.) n=1のときも成り立 つか確認する. 考え方 n≧1, h>0 より, (右辺) > 0 を作る式変形を行 (1 a 解 ①の右辺の極限を調べ る。 分母, 分子を n で割る. (2) を利用することを考 える. anx" に着目して x= とおいてみる. p.617

回答募集中 回答数: 0
数学 高校生

丸で囲った3ってなぜくるのですか? またどこの3ですか?

132 をx 意。 さみうちの原理 [3x] (2) lim(3*+5x) / 「次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 > 極限が直接求めにくい場合は、はさみうちの原理 (p.21852) の利用を考える。 x (1) n≦x<n+1 (nは整数)のとき [x]=n すなわち []≦x<[x]+1 よって [3x]≧3x<[3x]+1 3< a lim 100 このとき X→∞ よって X→∞ (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。 なお、記号[]はガウ みうちの原理を利用する。 (2) スが最大の項でくくり出すと (359(20) +1-1(20) +12 (2) の極限と ² { ( ²³ ) * + 1} ²³ の極限を同時に考えていくのは複雑である。 そこで、 はさ CHART 求めにくい極限 不等式利用ではさみうち [3x] x 答 | | 不等式 [3x]≧3x<[3x] +1が成り立つ。x>0のとき,各辺 | [3x] 1 をxで割ると ¥3 x x 1 [3x] +1 から 3 [3x] x この式を利用してf(x) [3x]≧ g(x)/ x X10 x→∞であるから x> 1 すなわち0< − <1と考えてよい。 はさみからのすからどう lim X→∞ .. X>1>0 [3x] =3であるから 2 (3¹+5³) * = [5*{( ³ )* +1}} * = 5{(³)*+1}* *th5_1<{( ³ )* +1} * < ( ³ ) ** +1 lim p.218 基本事項 5. 基本105 ここで, 3-1 [3x] x =3 +11であるからパー =1 lim(3+5)* - lim 5{()*+1}*-5-1 =5.1=5 はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α x→∞であるから,x>10<<1と考えてよい。 x {( ²³ ) * + ¹}* < { ( ³ ) * + ¹} * < { ( ³ ) *+1}...(*) <A>1028, a<b2518 A°A°である。 x-00 ならば limh(x)=α などわかんなのが 225 [I][2A] 次の極限値を求めよ。ただし、[ ]はガウス記号を表す。 [(²³)*+ ( ²³ ) } * 底が最大の項5*でくくり 出す。 /31 * " + 1>1 であるから, (*)が成り立つ。 4章 16 関数の極限 (p.231 EX100

回答募集中 回答数: 0
1/9