学年

質問の種類

数学 高校生

9の(2)の問題でマーカーが引いてある式はどこから考えたのですか?

4 メジⅠⅡABC受 一方, 解が1≦x≦be y ゆえに、 15 22で、他の解は x=4 (2)与式から 2y-10+(x+3y)√2=0 x-2y-10, x+3yは有理数 あるから は無理数で あるxの2次不等式で, x2の係数がα (<0) で あるものは y=a(x-1xx-b) 01 b x-2y-10=0, x+3y=0 これを解いて x=6, y=-2 すなわち (3) 与式から+3-2xi=1-3y+(3+y)i 3,2x, 1-3y, 3+y は実数であるから x2+3=1-3y ...... ① -2x=3+y a(x-1)(x-b)≥0 ax2-(ab+a)x + ab≧0 ② ①②の係数を比較すると 8 -(ab+a)=' ...... ② ②から y=-2x-3 ...... 3 ①に代入して整理すると x2-6x-7=0 これを解くと よって (x+1)(x-7)=0 工 ゆえに x=-1,7 ③から x=1のとき y=-1 ab=-2 2 a=-= -3 b=3 これはa<0 を満たす。ナスリー 別解 (①を導くところまで同じ) 8 F(x)=ax2+2/3x-2 とおく。 ① を満たすxの範囲が1≦x≦b であるとき, x=1は2次方程式 F(x)=0の解の1つである。 よって, F(1) = 0 から 8 x=7のとき y=-17 したがって (x,y)=(-1, -1),(7,17) 9 (1) 3x-52(x+α) を解くと これを満たす最大の整数 xが8であるための条件 は 8<2a+59 x<2a+5 a+-2=0 2 すなわち a=- 12/3(これはa<0を満たす) すなわち 32a≦4 よって多く 2a+59 3 X 8 このときは12/22 2023x-220 <a≤2 整理して (2) [1] k=0のとき すなわち 不等式は1>0 となり, すべての実数xについ て成り立つ。 ゆえに x2-4x+3≤0 (x-3)(x-1)≦O 1≦x≦3 [2] 08-11 したがって a=-- 2 3' b=3 不等式が常に成り立つ条件は, (左辺 = 0 の判 別式をDとすると k0 ...... ① かつ D0 Jei ここで D=(3k)2-4k(k+1)=k(5k-4) D<0 から 5k-4) <0 よってok ② 4 ①,②からok</ 4 以上から (3) f(x) ≥9(x)+5 ゆずに 10 (1) x3= (x2+2x+4)(x-2)+8 =8 2 x²+1 = (x+1)−3·x±√(x++) 心 =33-3.3=18, 2.x2. **+=(+)-2-x² +1 = (x²+ ±17)² - 2. x². x4 1 -{(x+1)-2-x-12-2 =(32-2)2-2=72-2=47 x+2x+2=1/2x+4 (3)展開式の一般項は すなわち x + fx-220① 3C, (2x2)-(1)=C, 27—1 x 27—1)-

未解決 回答数: 1
数学 高校生

(2)について質問です。下線を引いているようになぜm+r+1/n≦1とm+r+1/n≧1で場合分けをするのですか?またその後に線を引いている(n-r)k+r(k+1)はどのようにして計算したら出てくるのかも分かりません💦どなたか教えてほしいです

第9章 整数・数学と人間の活動 40 よって、等式①は成り立つ。 (1)〜(曲)より、すべての実数xに対して, 等式①は成り 立つ。 [x]≦x<[x]+1 より [x] <x<[x]+1 n n [x] は整数であるから,[nx] は, nk, nk+1,nk+2, .........nktn-1 (kは整数)のいずれかで表される. [nx]=nk+r(r=0, 1, 2,…, n-1) kt1≦x<k+r+1 とすると,①より ......③ n n ここで,m=0,1,2, …………, n-1 として ③の各辺 に皿を加えると, n m+r m k+ ≦x+ m+r+1 <k+ n n n m+r+1 22 m+r k≦k+ n m n -≦1,すなわち,0≦m≦n-r-1 のとき, -≤ x + <h+ m+r+1 ≦k+1 n より[x+m-k =k n m+r,すなわち, n-r≧m≦n-1のとき, n m k+1≦k+m+rsxt. <k+ n m+r+1 <k+2 n n より,[x+m]=k+1 n したがって, [x]+[x+/-]+[x+2]+... + [x+ n-r n ] + [x x+ n-r n +x+ n. n =(n-r)k+r(k+1)=nk+r また②より よって、等式 [nx]=nktr [x]+[x+2]+[x+2]+....+[x+タリー[28] は成り立つ. 注 (1)において, m = 0, 1, 2 として ktmtr r≤x+. m m+r+1 <h+ のときの [x+7] 3 3 3 3 の他に着目すると, m+r+11 のとき [+] 3 mtr = 21のとき, [x+k+1 m =k r=0 のときは,これを満 すmの値はない。 kとなるのは, [x], n-r k+1となるのは、 n の(n-r) 個 [ x + 1 = 1 ] 0 n- の個

回答募集中 回答数: 0
1/111