学年

質問の種類

数学 高校生

数Bの数列の問題です この問題はなにを求めるのかがよく分かりません めちゃめちゃ初歩的な事だと思うんですけど教えていただけると嬉しいです!

B1-48 (518) Think 例題 B1.27 いろいろな数列の和(2) S„=1−22+32-4°+....+(-1)" を求めよ **** nが偶数か奇数かで [考え方 S, は数列 am=(-1)*+1㎡の初項から第n項までの和であるが、n その和を分けて考える必要がある nが偶数、つまり、n=2mmは自然数のとき, 解答 Szm=1-2°+3°-4++ (2m-1)-(2m) 第2m =(12°)+(32−4°) ++{(2m-1)−(2m)} nが奇数,つまり,n=2m+1のとき wwwwwwwwwwwwww 第 3 項 Szm+1=12-2+32-4++ (2m-1)-(2m)+(2m+1)2 t -第 (2m+1) 項 =(1-2)+(3-4)+…+{(2m-1)-(2m)}+(2m+1)2 FL m III wwwwwww nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−22)+(32-4) +... +{ (2m-1)-(2m)2} wwwwwwwwwwww m m ={(k-1)-(2k)}=2(-4k+1) k=1 k=1 =-4 4.1.2m(m+1)+m=-m(2m+1) 2m(+1)+ n=2mより,m=nを①に代入して, == …② n=2,4,6, 数列 {(2m-1)²-(2m) の初項から第 m項ま での和と考える. ...① me 和はnで表す. になる。 -2m-m mm1 nが奇数のとき, n=2m+1(mは自然数) とおくと, wwwwwwww Sn=S2m+1=(1²-22)+(3²-4²)+) (+)(-s)- +{(2m-1)-(2m)2}+ (2m+1)^ =S2m+(2m+1)=-m(2m+1)+(2m+1)^ =(m+1)(2m+1) _1. ③ n=2m+1 より,m=1/2(n-1) ③に代入してxs S=(1/n+1/2)(n-1+1)=1/2m(n+1) ④は n=1のときも成り立つ n=3,5,7, 塩だなあない場合 x(E- (x)= よって、②より,S,=(-1)+1.1 S=(-1)+(n+1) Focus n=1 とすると, 11/21.2=1 場合分けした②④ の形のままでもよい。 が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2+

解決済み 回答数: 1
数学 高校生

この問題の④がn=1の時も成り立つとありますが、どこで成り立っているのかが分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

B1-40 (58) 第1章 数 列 Think ○見るたり多度 例題 B1.27 いろいろな数列の和 ( 2 ) Sm=1−22+32-4'++ (−1)" を求めよ. 解答) その和を分けて考える必要がある. nが偶数、つまり=2mmは自然数のとき、 wwwwwww wwwwwwwwwwwwwww Sam=1-2+3-4++ (2m-1)-(2m)2 2m III Colu nが奇数、つまり=2m+1のとき =(12−22)+(32-4°)+…+{(2m-1)-(2m)2} 第 m項 S2m+1=1-2°+32-4°++ (2m-1)-(2m)+(2m+1)2 =(12-2)+(3°-4°)+…+{(2m-1)-(2m)2}+(2m+1)2 nが偶数のとき, n=2mmは自然数) とおくと, wwwwwwwwwwwwwww. Sm=S2m=(12−22)+(3-4)+…+{(2m-1)-(2m)2} ={(k-1)-(2k)}=2(-4k+1) k=1 第 (2m+1)項 いう m 第3項 こ①初う例 n=2,4,6 数列 {(2m-1)^- 初項から第 =-4mm(m+1)+m=-m(2m+1) n=2mより,m=in を①に代入して, == S,=-1/2"(n+1) ② __(n+1) での和と考える 和はnで表す っちの方 ○かりやよい wwwwwwwwwww nが奇数のとき,n=2m+1(mは自然数) とおくと, Sw=Szm+1= (12-2) + (3-4) +...・・・ +{(2m+1)-(2m)2}+(2m+1)^ =Szm+(2m+1)=-m(2m+1)+(2m+1)2 (m+1)(2m+1) (3 n=2m+1より,m= (n-1) を③ に代入して, S.=2+1/2)(n-1+1)=1/2m(n+1)……③ ④は n=1のときも成り立つ. よって,②④より, Focus n=3,5,7, n=1 とすると 1/12=1 Sn=(-1)+12 n(n+1) 場合 この形のままでもよ nが偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 練習 一般項am=(-1)n(n+1) で定められる数列の和 B1.27 S„=a+a2+α+... + α を求めよ. ***

解決済み 回答数: 1
数学 高校生

解答の計算方法が分かりません!誰か解説してくださると嬉しいです。上から3段目までは分かります 宜しくお願いいたします🙇

目標 2 いろいろな数列 (57) B1-39 Think 例題 B1.26 いろいろな数列の和 (1) **** 自然数 1, 2, ···...,nについて,この中から異なる2つの自然数を選び, その積を計算する.このようにしてできる積の総和S" を求めよ. 第1章 [考え方 たとえば、3つの数a, b, c で考えてみると, T=ab+bc+ca が求める積の総和である。 右の表より. a bc 1 2 3 n a 1 2 3n b 2 2 6. 2n (a+b+c)=a+b+c+2(ab+bc+ca) =d+b+c+2T C 3 3 6 ...3n つまり、T=1/2(a+b+c)-(a+b+c)}となる。 nn 2n3n... wwww www 解答 この考え方を1, 2, 3, .......,nについて用いる. S„= (1×2+1×3+......+1×n) + (2×3+2×4+ ......+2×n) +....+(n-1)×n (上の表の部分の和になって 3つの数a, b, c の場合と同様に考えると, ( 1+2+3+ ...... +n)=(12+2+3+......+n) +2S であることがわかる. (1+2+3+... +n)=(12+2+3+... +m²)+2S より S=1/12 {(1+2+3+…+m)-(1°+2°+3°+…+m)} 考え方を参照 n(n+1) 1)n(n+1)(2n+1) 1 24 2n(n+1){3n(n+1)-2(2n+1)} 1 (n-1)n(n+1)(3n+2) 24 1 12' 1zn(n+1) で くくる. 注〉 自然数 1, 2, n に関して,この中の自然数んとその他の自然数との積の和は, k(1+2+......+n)k と表せる. これを用いると,2×S,=Σ{k(1+2++nk} となる. 注 P=(x+1)(x+2) (x+......(x+n) の展開式は このとき x" の係数は1, 次式となる. "の係数は1+2+ ...... +n=- 1/2m(n+1) となる. では,x" -2の係数はどのようにして求めればよいだろうか. Pを展開する際に, (x+1), (x+2) (x+3), ...... (x+n) のn個の ( 2個の )から数字を, 残り (n-2) 個の ( -2の項を作ることができる. )について, )からxを選んで積を求めれば, したがって,x" -2の係数の総和は、例題 B1.26 と同様に考えればよい. つまり、x-2の係数は 1 24 (n-1)n(n+1)(3n+2) となる. 東習 数列 1, 3, 5, 2n-1 について この中から異なる2項を選び、その積を 1.26 計算する。 このようにしてできる積の総和 S, を求めよ. 2* **

解決済み 回答数: 1
数学 高校生

この問題なんですが、一枚目の解答と、二枚目の解説動画の解答とで少し形がちがうのですが、どちらで答えたほうがいいのでしょうか?あと、一枚目の解答の最後の「よって、」からがなぜそうなるのかが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

31-40 (58) 第1章 数 列 Think 例題 B1.27 いろいろな数列の和 (2) 考え方 解答 S,=1-2'+3°-4'++ (−1)"'n を求めよ. **** S, は数列 an=(-1)"+2の初項から第n項までの和であるが, nが偶数か奇数から その和を分けて考える必要がある. nが偶数, つまり,n=2mmは自然数) のとき. wwwwwwwwww S2m=12-2°+3°-4++ (2m-1)-(2m) =(12-2)+(32-4)+. +{(2m-1)-(2m) } nが奇数、つまり、n=2m+1のとき 第2 第1項 S2m+1=12-2°+32-4’++ (2m-1)-(2m)+(2m+1) 第 (2m+1)項 =(1-2)+(32-4°)+....+{(2m-1)-(2m)*}+(2m+1) 第項 nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−2°)+(3-4)+..+{(2m-1)-(2m) } =Z{(2k-1)-(2k)*}=2(-4k+1) k=1 1 n=2, 4, 6. 数列 ((2m-1)-(2m) の初項から第m での和と考える。 =-4zm(m+1)+m=-m(2m+1) n=2m より,m= =nを①に代入して S=-- =-1/2m(n+1) -12(n+1) 和はで表す. nが奇数のとき, n=2m+1(mは自然数) とおくと, ちの方 m 〇りやよい m S=S2m+1= (12−22) + (3-4) +・・ +{(2m+1)-(2m)2}+(2m+1)^ =Szm+(2m+1)=-m(2m+1)+(2m+1) (m+1)(2m+1) =/ ③ n=2m+1 より, m = (n-1) を③に代入して S.=(2x+1/2)(n-1+1)=1/2m(n+1)……③ ④は n=1のときも成り立つ よって,②④より Focus S=(-1)+1 1/21n(n+1) が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 n=3, 5, 7, ...... n=1 とすると, 12/21.2=1 場合分けした② ① の形のままでもよい。 練習 一般項 an=(-1)n(n+1) で定められる数列の和 B1.27 S„=a1+a2+α+......+α を求めよ. ***

解決済み 回答数: 1
数学 高校生

(1)の部分分数分解の仕方が分かりません。だれかに分かりやすく教えて頂きたいです。

例題 39 nを自然数とするとき, 次の和を求めよ。 いろいろな数列の和 [(1) 類 北海道情報大, (2) 東京電機大 ] 考え方 b (1) Ž k=1 (2k+1)(2k+3) いろいろな工夫によって, 和を求める (2)1・1+2・2+3・2+......+n・27-1 ポイント 1 部分分数に分ける → (1) 和を書き並べる ② 途中を消す 1 1 1 1 (2n+3)-3 2 3 2n+3 1 =S とおく → = 3(2n+3) 2 (2) 求める和をSとすると S=1・1+2・2+3・2+......+n・2"-1 n 3(2n+3) (1) 分数の数列の和は,部分分数に分けて途中を消すことで, 和を求められる場合がある。 1 1 第k項を 1 2k+3 22k+1 (2k+1)(2k+3) と部分分数に分解する。 -2 (2){ (差) (等比)}型の数列の和Sは, S-rs (rは等比数列の公比) を計算することで和を求められる。 等差数列 ak=k と等比数列 bk=21 の積の和 k2k-1 であるから, S-2S を計算する。 解答 n k=1(2k+1)(2k+3) {( k=1 = { ²² (2²+1 — 2²+3)} = = = =² (2k +1 k=1 2 /1/11(1/13-1/2)+(1/3/1/1)+(1/1) 5 157 9 1 + + k=12k+1 2n+g)} 2n+1 2k+3 両辺にを掛ける → この両辺に2を掛けると ② S-rs を計算 等比数列の和 よって-S=- 27-S-1-(2-1) 2S= 1·2+2·2²+......+(n−1)• 2n−1 + n•2” 辺々を引くと S-2S=1+2+2+... +2"-1-n・2" S (1) S (S) -n2"= (1-n)・2"-1 2-1 したがって S=(n-1)・2"+1 答

解決済み 回答数: 1
数学 高校生

なぜnが偶数のとき、奇数のときで分けるのでしょうか 最後の式もなぜ足すのかと計算方法が分からないです。よろしくお願いします🙇‍♀️

500 第8章数 列 例題 285 いろいろな数列の和 Sn=12-22+32-42++(-1)n+1n2 を求めよ. *** ........(-1)+1の和であるが,nが偶数か奇数かで、 考え方 Sn は数列 12, 22, 32, 42, その和を分けて考える必要がある. nが偶数、つまり、n=2mmは自然数) のとき, Sn=12-22+32-42++ (2m-1)2-(2m)2 |解答 第 2 項 =(12-22)+(32-42) +...... +{(2m-1)-(2m)2} 第3項 第 (2m+1) 項 nが奇数, つまり,n=2m+1のとき, Sn=12-22+32-42++ (2m-1)2-(2m)+(2m+1)2 =(12-22)+(32-42)+…+{(2m-1)-(2m)2}+(2m+1)2 -第1項 nが偶数のとき, n=2m(mは自然数)とおくと, n=2,4.6. Sn=Szm=(12−22)+(3-4)+... +{(2m-1)-(2m)2} m m ={(2k-12-(2k)2}=Σ(-4k+1) k=1 k=1 =-4• -4.1 m (m+1)+m=-m(2m+1)....... n=2mより,m=1/23nを①に代入して, ++ S₁ = -1/n (n+1) …② nが奇数のとき, n=2m+1(mは自然数)とおくと, Sn=Szm+1=(12−22) + (32-42) +・ +{(2m-1)2-(2m)2}+(2m+1)2 数列 { (m-1)^2-(2m) の初項から第m項ま での和と考える. |和はnで表す. n=3,5,7, =Szm+(2m+1)=-m(2m+1)+(2m+1)2 Focus =(m+1)(2m+1) n=2m+1 より,m=1/2(n-1) ③に代入して, === S.-(12+/1/1) (17-1+1)=1/2(+1) n+ ④は n=1のときも成り立つ. …... ④ n=1 とすると, よって,②④より,S,=(-1)+11n(n+1)) nが偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 •1・2=1 場合分けた② ④ の形のままでもよい。

解決済み 回答数: 1
1/10