学年

質問の種類

数学 高校生

解き方を教えて下さい!お願いします

重要 1 1辺の長さが2である立方体 ABCDEFGHの辺ABの中点をMとする。 線分 MGの長さはア∠DGM=イウ であるから, △DGMの面積は 3 図形と計量 で ある。 また, 四面体 CDMG を考えると,その体積は オ となり, 頂点Cか カ ら平面 DGM へ下ろした垂線 CP の長さは キ ク である。 POINT! 空間図形 - 垂線の長さ 平面図形を取り出して考える (断面図も有効)。 四面体の高さと考え、 体積を利用。 錐体 (四面体, 円錐など) の体積 ×(底面積)×(高さ) 3 解答 辺EFの中点をN とすると, D ◆三平方の a C 定理 b MI a2=62+c2 P C CA △NFG において、 三平方の定理により NG=√/FG2+NF2=√22+12=√5 AMNGにおいて、 三平方の定理により MG=√NG2+MN2=√(√5)2+22=73 △DGM において, MD=NG=√5,DG=√2°+2°=2√2 であるから, 余弦定理により ◆△MNGを取り出す。 E N 2 F M √5 D =1/23・S・CP ·S.CP よって、1/13-1/2.3. また,四面体 CDMG の体積 V は, △CDM を底面とすると 2= ・・△CDM・CG= V-13ACDM・CG=1/31 (1/2・2・2)・2 - 4 3 オ 3 この四面体を,△DGM を底面として体積を考えると 4 cos∠DGM= 32+(2√2)-(√√5)² 3 2√2 1 2.3.2/2 √2 よって ゆえに, △DGMの面積Sは ∠DGM=イウ45° S=1/2・3・2√2 sin 45°=1/2・3・2√2 1/12 =13 ◆△DGM を取り出す。 取り 出した図形を別に図にか くとよりわかりやすい。 ← cos DGM.d _MG²+DG2-MD2 2MG DG 基 22 MG DG sin ZDGM S=1 2 0 基 23 1 3 ← x(底面積)×(高さ) ≠4 •3•CP から CP=3 1 ◆CP を高さと考える。 体積 は同じ。 x(底面積)×(高さ) 3 練習 11 右の図のような直方体 ABCDEFGH において, AE=√10, AF=8, AH=10 とする。 A D B E ウ H このとき,FH=アイ であり, cos∠FAH= であ I F る。また,三角形AFHの面積はオカキ である。 したがって, 点E から三角形 AFHに下ろした垂線の長さ G コ は である。 Lin サ

未解決 回答数: 1
理科 中学生

⑵と⑷で比例式を使ったあとなぜ-10しなければならないのか教えてください!

H TH Na D 問題 1 中和するときの濃度と体積の関係 5つのビーカーに 塩酸を30cmずつ入れ, ある濃度の水酸化ナトリウム水 溶液を表のように加えて水溶液 A~Eをつくった。 水 溶液 A~Eに緑色のBTB溶液を加えたところ, 水溶液 の色が表のようになった。 次の問いに答えなさい。 50 C 20 30 水溶液 (cm³) A B D E 30 30 30 30 30 10 15 20 25 30 黄色 黄色 緑色 青色 青色 図 1 加えた水酸化ナトリ ウム水溶液 [cm] 水溶液の色 □(1) 図1は,実験に使った水酸化ナトリウム水溶液10cmに ふくまれているイオンをモデルで表したものである。塩酸 30cmにふくまれているイオンを,陽イオンを○+, 陰イオ ンを○として、 図2にモデルで表しなさい。 図2にかく。] + 40-10 □(2) Aの水溶液に実験と同じ濃度の塩酸30cmを加えたところ, 水溶液の色は黄色になった。 この水溶液を緑色にするために は,実験と同じ濃度の水酸化ナトリウム水溶液を,あと何cm 加えればよいか。 図2 0 0 0 0 49/cm² ] (3)この実験と同じ濃度の塩酸30cmに水30cmを加え, 60cm の塩酸をつくった。 次に、この塩酸30cm をは かりとり,実験と同じ濃度の水酸化ナトリウム水溶液を20cm加えて水溶液Fをつくった。 水溶液Fに緑色 のBTB溶液を加えると, 水溶液の色は何色になるか。 と青色 ] □(4) この実験と比べて濃度が2倍の塩酸60cm を用意し, 実験と同じ濃度の水酸化ナトリウム水溶液を10cm3 加えて水溶液Gをつくった。 水溶液 G に緑色のBTB溶液を加えたところ, 水溶液の色は黄色になった。 こ の水溶液を緑色にするためには,実験と同じ濃度の水酸化ナトリウム水溶液を,あと何cm加えればよいか。 80-10 液遊50cm3にフ 図1 [ 80cm² ]

未解決 回答数: 1
物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
1/1000