学年

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

回答募集中 回答数: 0
生物 高校生

答えを教えて欲しいです。お願いします。

5 10 15 20 25 資料学習 顕微鏡観察 CHECK▼ 1. 顕微鏡の操作 資料 りんぺんよう タマネギの鱗片葉の表皮をはがして, スライドガラスにのせて水を1滴落と タマネギ の鱗片葉 し,カバーガラスをかけてプレパラートをつくった。これを顕微鏡で観察する りんかく と,細胞の輪郭だけが見えた。 問題 問1 核を観察するにはどうすればよいだろうか。 問2 視野内に見えるゴミが,どこについたものかを調べるにはどうすればよ いか。 (a) 接眼レンズのゴミの場合 (b) プレパラートのゴミの場合 (C) 対物レンズのゴミの場合 問3 右図の X の部分で,細胞がきれいに見えないのはなぜか。 理由を考えて 問4 問5 みよう。 先に低倍率で観察してから, 高倍率に切り替えるのはなぜか。 次の点に ついて考えてみよう。 (a)低倍率と高倍率では,どちらが明るく見えるか。 (b)低倍率と高倍率では、どちらが広範囲に見えるか。 (c) プレパラートを動かして,きれいに見える部分を探す作業は,低倍率と高倍率ではどちらの方が容易か。 ピントを合わせるときに、まず対物レンズをプレパラートに近づけたあとに, プレパラートと対物レンズを 離すようにして行うのはなぜか。 2. ミクロメーターによる測定 資料 ある倍率で接眼ミクロメーターと対物ミクロメーターを顕微鏡 にセットし,目盛りが一致する点 (M, N) を求めたところ図aの ようになった。 また, 同じ倍率でユリの花粉を接眼ミクロメータ で計測すると,図のようになった。 問題 問6 花粉の長さ(ここでは長径) は何〔μm〕 かを求めよ。 ただし、 対物ミクロメーターの1目盛りは10μmである。 実線は対物ミクロメーターの目盛り 破線は接眼ミクロメーターの目盛り M 3 N 1 8 図 a 図 b

回答募集中 回答数: 0
数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0