学年

質問の種類

公民 中学生

(7)について、「公債金の返済にあたる国債金のほうが少ないから」という理由の意味がわかりません。 国債というのは公債の中の国が発行するものでしたよね…?😭

(4) 財政の主な役割である社会資本の提供,経済格差 Ⅱ 国の歳出の割合 (2022年度) ぜせい るいしん の是正、景気の安定化のうち、 累進課税と関係があ 33.7% 22.6% るものはどれですか。 14.8% (福島改) 入試 (5) 好景気の時期の財政政策を次から2つ選びなさい。金など ア 減税 イ公共事業への支出減 ⅡI ウ 増税 エ公共事業への支出増 (6) 作図ⅡIをもとに, ⅢIの国の歳出 のグラフを完成させなさい。 国の歳入 総額 107.6兆円 入試 (7) 記述 ⅢIを見ると,今後も国債残 国の歳出 社会保障 国債美容 (香川改) 総額 関係費 22.6% 107.6兆円 33.7% 高が増えると考えられます。 その理由 を,Ⅲ中の語句を使って、簡単に書き なさい。 77 T 1755 |社会保障関係費 国債費 11 地方交付税交付 租税・印紙収入 60.6% その他 5.1 公債金 34.3 文教および科学振興費 5.0- 公共事業関係費 5.6 防衛 関係費 5.0 その他 33 13.3 L 0 10 20 30 40 50 60 70 80 90 100 % (2022年度) (財務省資料 ) Fare (5 (6) たから。 経済格差の是正 ウ エイ 図中に記入しましょう。 公債金よりも、そ の返済にあたる国思 賃金のほうが少な いからの である 消費 府は D 掲載

回答募集中 回答数: 0
数学 高校生

問題⑵⑶の数学的帰納法について4つ質問させて下さい!質問量が多くてすみません… ①写真1枚目の赤の下線を引いた部分について、私の解答(写真2枚目)では全て、整数でなく自然数と書きました。私は赤線部分は自然数の範囲に収まるのかなと思っていたので、なぜわざわざ整数と書いている... 続きを読む

2021年度 〔4〕 α=2, b=1および リー an+1=2a+36, b +1=α+2b (n=1, 2, 3, ...) で定められた数列{an}, {bn}がある。 C = a b とおく。 (1) c2 を求めよ。 149 (2) cm は偶数であることを示せ。 (3) nが偶数のとき, cm は28で割り切れることを示せ。 ポイント 連立の漸化式で定められる2つの数列の一般項の積についての数学的帰納法 による証明の問題。 (1) 漸化式でn=1 とおいて求める。 (2) 数学的帰納法により証明する。 (3)n=2mとおいて, m について数学的帰納法で証明する。 解法 (1) a2=2a+3b1=4+3=7 b2=α +261=2+2=4 より C2=azbz=7×4=28 (2) a1=2,b=1,4+1=2a+3bb1=an+2b (n=1, 2, 3, ... より帰納的に a b が整数であると言えるので, cm=amb" も整数である。 cm が偶数であることを数学的帰納法により証明する。 (I)n=1のとき,c=a,b=2×1=2より C1 は偶数である。 (II)n=kのとき cが偶数であると仮定すると, a b は偶数であるから=211は 整数) とおける。 n=k+1のとき ( Level A TRAIGHT Ck+1=ax+1bk+1=(2a+3b) (+26) =2a²+7ab+6b²=2a²+14Z+6b2² =2(a²+71+3b²2 ) ここで, a2+71 + 3b²2 は整数であるから Ck+1 も偶数である。 (I), (II)より すべての自然数nに対してcm は偶数である。 (証明紋) (3) n=2m(mは自然数とおき, C2mm が28で割り切れることを数学的帰納法によ り証明する。 (I) m=1のとき, c2 = 28 より 28で割り切れる。 (II) m=kのときc2が28で割り切れると仮定すると, 28 (1は整数)とおけ る。 m=k+1のとき C24+2=a2+2b24+2 = (2a2+1+3b2+1) (a2+1+2b2+1) = {2 (2a2+362) +3 (a₂+2b₂)}{2a+3b₂+2 (a₂+2b2x)} = (7a2 + 12b2) (4a24+7b₂24) = 28a2²+97a2b2+84b2² = 28a2²+97-28/+84b2x² = 28 (a24² +971 +3b₂²) D ここで, a² +971 +3bz² は整数であるから 22は28で割り切れる。 (I), (II)より. すべての自然数mに対して C2me は28で割り切れる。 ゆえに,nが偶数のとき, cm は28で割り切れる。 (証明終)

回答募集中 回答数: 0
物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
地理 中学生

こういう大きいお金の額を計算しなきゃ行けない問題って時間短縮したり簡単に求める方法ありますか、?

0.238 資料 1 一般会計歳出の主要経費別割合の推移 (会計年度) 2018年度 977,128億円 2020年度 1,026,580億円 2022年度 1,075,964億円 33.7% 34.9% 33.7% 国債費 23.8 22.7 22.6 公共事業 関係費 文教及び 科学振興費 地方交付税 (交付金) 6.15.55. 15.7. 防衛 関係費 その他 9.9 15. 26. 75. 45.2 9.9 14.65.65.05.0 13.5 (日本国勢図会2022/23年版ほかより作成) (1)※には,けがや病気、老齢,失業などが原因で生活が困難になったとき、個人に代 わって国が生活の保障を行う制度にかかる費用が当てはまります。 憲法第25条にもと づいて整備された, この制度を何といいますか,書きなさい。また,この制度に当て はまらないものを, ア~オから2つ選びなさい。 ア 公衆衛生 イ社会資本 ウ 社会福祉 I 公的扶助 才 規制緩和 (2) 資料1からわかることを述べた文として誤っているものを,ア~オからすべて選び なさい。 ア 2020年度と2022年度の歳出額は, ともに1,000兆円を超えている。 イ 国債費の割合が最も大きいのは2018年度である。 ウ地方交付税 (交付金) の額が最も少ないのは2018年度である。 工 公共事業関係費の割合は, 2018~2022年度にかけて,年々小さくなっている。 才防衛関係費の額は, 2018~2022年度にかけて,年々増えてきている。

回答募集中 回答数: 0
公民 中学生

中三の模試問題です これって合計特殊出生率どうやって求めてるのですか? 何方か教えてください

問5 Kさんは、現代社会について調べたことを発表するために、次のメモを作成した。これについて,あとの各 問いに答えなさい。 メモ ① 現在の社会では, 情報通信技術の発達による情報化とともに, グローバル化も進み, 日本にいても外国の 人びとや異なる文化にふれる機会が増えています。そのような中で、日本の伝統文化や年中行事の価値を見直 すことや,さまざまな人びとが共に生きる中でおこる課題や対立などに対し、 効率や公正の観点にもとづいて よりよい判断や選択をすることが大切だと考えます。 (4) (ア)線 ① に関して, Kさんは、祖父が中学生だった1960年と現在の社会の様子を比較するために,次の表 を作成した。 これについて, あとの各問いに答えなさい。 表 世帯 家計 食料生産 人口 人口 0~14歳の人口割合 15~64歳の人口割合 65歳以上の人口割合 一般世帯総数 核家族世帯の割合 一人暮らし世帯の割合 三世代世帯など その他の世帯の割合 世帯の消費支出 世帯の食料費支出 野菜の国内消費量 野菜の国内生産量 野菜の輸入量 1960年 9,342万人 30.2% 64.1% 5.7% 22,539千世帯 52.3% 15.9% 2. a, d 31.8% 32,093 円 12,440 円 1,173万9千トン 1,174万2千トン 1万6千トン 年齢人口 消費支出」 にしめる 「世帯の食料費支出」の割合 ども、もしくは夫婦のみからなる世帯の割合 ■給率 2 2020年 1億2,615万人 11.9% 59.5% 28.6% 55,705 千世帯 54.1% 38.0% の支出は二人以上の勤労者世帯。 野菜の消費量, 国内生産量は各年度の数値。 (『数字でみる 日本の100年」 『日本国勢図会 2022年版』 『日本のすがた 2022年版』 をもとに作成) 7.9% ~dのうち, 1960年と2020年を比べたときに2020年の方が高いもしくは多いものの組み合わせ も適するものを,表を参考にしながら、あとの1~4の中から一つ選び, その番号を答えなさい。 305,811円 79,496 円 1,436万1千トン 1,147万4千トン 294万6千トン

回答募集中 回答数: 0