学年

質問の種類

生物 高校生

よければ解説よろしくお願いします

[] 準 20. 遺伝情報とアミノ酸配列 6分 (a) DNA の遺伝情報はまず mRNAに転写され, タンパク質へと翻 訳される。 mRNAのコドンがどのアミノ酸を指定するのかについては, (b)大腸菌の抽出物を用いて,特 定の塩基配列をもつ合成 RNA から人工的にタンパク質を合成させる実験によって調べられた。 問1 下線部(a)に関する記述として最も適当なものを、次の①~④のうちから一つ選べ。 ①mRNAを構成するヌクレオチドの構造は、塩基にTではなくUが使われることを除き, DNA を 構成するヌクレオチドの構造と同じである。 見えている ②転写では,DNAの2本鎖の一方を鋳型としてmRNAが合成されるが,このとき鋳型とならなか ったほうの DNA 鎖が,合成された mRNAに対して相補的である。 ③ 呼吸に必要な遺伝子など,多細胞生物のさまざまな種類の細胞で共通して発現する遺伝子がある。 1番目 の塩基 3番目 ④ 多細胞生物では, ゲノムを構成する DNA のどの部分も, 一生のうちに一度は転写される。見るね。 問2 下線部(b)について, AとCだけからな るコドンでは, 表に示すアミノ酸が指定さ れる。 次の(1),(2)の塩基配列をもつ合成 RNA から合成されるタンパク質のアミノ 酸配列として最も適当なものを後の① ~⑤のうちからそれぞれ一つずつ選べ。 (1)AとCが交互にくり返された配列 (2) ACCA がくり返された配列 2番目の塩基 C A の塩基 CCC CAC ヒスチジン プロリン CCA M CAA グルタミン A ACC AC アスパラギン A トレオニン ACAされる AAA リシンA . ① くり返し配列にはならない。 ② 2種類のアミノ酸が交互に並ぶ。 0 0 ③③ 3種類のアミノ酸が決まった順に並び, それがくり返される。 ひと A 中文の内 ④ 4種類のアミノ酸が決まった順に並び、それがくり返される。 ⑤ 5種類のアミノ酸が決まった順に並び, それがくり返される。 問3 下線部(b)について、 次に示すくり返しの塩基配列からなる合成 RNA を用いたところ, 「アミノ酸 w-アミノ酸 x-アミノ酸y-アミノ酸w-アミノ酸z」のくり返し配列(・・・wxywzwxywzwxywz…)か らなるタンパク質1種類だけが合成された。 この場合, アミノ酸yとして最も適当なものを,後の ①~⑥のうちから一つ選べ。 ...AAAACAAAACAAAACAAAACAAAACAAAAC... 合成 RNAの塩基配列 ① プロリン ②トレオニン ⑥ リシン共 ③ ヒスチジン ④ グルタミン ⑤ アスパラギン ① [23 共通テスト追試 改 22 関西大 改] 第2章 遺伝子とそのはたらき 19

回答募集中 回答数: 0
数学 高校生

なぜxをαと置き換えるんですか?? その数字がαであるのはなぜですか? あとα、kは実数であるから〜 のところ、kは問題文に書いてあるからわかるんですがなぜαまで実数と言い切れるんですか? 色々分かってなくてすみません😭

要 例題 43 R5 1/27× 73 00000 虚数を係数とする2次方程式 の方程式(1+fx2+(k+i)x+3+3ki-0 が実数解をもつように、実数k の値を定めよ。 また、その実数解を求めよ。 1 CHART & SOLUTION 基本 38 2次方程式の解の判別 判別式は係数が実数のときに限る DEQから求めようとするのは完全な誤り(下のINFORMATION 参照)。 実数解をとすると (1+1)q' + (k+fa+3+3ki-0 この左辺をa+bi (a, は実数)の形に変形すれば、 複素数の相等により =0.6=0αの連立方程式が得られる。 解答 方程式の実数解をαとすると 整理して (1+i)²+(k+i)a+3+3ki = 0 (a²+ka+3)+(a²+a+3k)i=0 akは実数であるから、+ka +3,+α+3kも実数。 x を代入する。 a+bi=0 の形に整理 この断り書きは重要。 2章 9 2次方程式の解と判別式 よって +ka+3=0 ① a²+a+3k=0 ② ①-② から (k-1)a-3(k-1) = 0 ゆえに よって [1] k=1のとき (k-1)(a-3)=0 1 または α=3 ① ② はともに これを満たす実数 となる。 +α+3=0 は存在しないから,不適。 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 [1], [2] から, 求めるkの値は k=-4 実数解は INFORMATION x=3 素数の相等。 αを消去。 inf を消去すると α-24-9=0 が得られ、 因数定理(p.87 基本事項) を利用すれば解くことがで きる。 D-12-4-1-3=-11<0 ①:3'+3k+3=0 ②:3'+3+3k=0 25 2次方程式 ax2+bx+c=0 の解を判別式 D=4ac の符号によって判別できる のは a b c が実数のときに限る。 例えば,a=,b=1,c=0 のとき 2-4ac=1>0 であるが, 方程式 ix²+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° xの方程式 (1+i)x2+(k-i)x-(k-1+2i) = 0 が実数解をもつように, 実数kの値 を定めよ。 また, その実数解を求めよ。

未解決 回答数: 1