学年

質問の種類

数学 高校生

XがZ0とじゃない書いてる理由なんですか?

△ 104 × 00 基本例 例題 65 逆関数の微分法は有理数) の導関数 (3) 次の関数を微分せよ。 (1) y=xの逆関数の導関数を求めよ。 (2) y=x+3.xの逆関数をg(x)とするとき,微分係数g' (0) を求めよ。 /p.110 基本事項 5. (イ) y=x2+3 dy 1 指針 (1) (2) 逆関数の微分法の公式 を利用して計算する。 dx dx dy (1) y=xの逆関数は x=y" (すなわち y=xl) xyの関数とみて”で微分し、 最後にyをxの関数で表す。 (2)y=g(x)として,(1) と同様にg'(x) を計算すると,g'(x)はyで表される。 (3) →x=0のときのyの値 [=g(0)] を求め,それを利用してg' (0) を求める。 (x)'=x- 有理数のとき (1) y=xの逆関数は, x=y' を満たす。 を利用。 別解 (1) y=x3の逆関数 解答 よって dx dy = 3y 2 ゆえにx≠0のと dy 1 1 1 dx dx 3y2 3(y³) 3x3 3 dy y=x1で ② 48 249 dy-(x3)-x- dx ③ (2)/y=g(x) とすると, 条件から x=y+3y ・・・・・・ ① が満 関数 f(x) とその逆関数 何のためにだされる。 若いてる? ①から x=0のとき dy 1 1 g'(x) = x=dx = 3y¹³ +3 dy 32 '+3y=0 すなわち y ( y2+3)=0 y'+3>0であるから y=0 1 g'(0) = 3.0 74+3 = 1/3 302+3 したがって 3 (3) (7)_y=(x)'=x=- 4√x f'(x) について y=f(x)⇔x=f'(y) の関係があること(p.24 基本事項20) に注意。 (1)_y={(x²+3)³)'=(x²+3)(x²+3)=√x²+3 練習 y= ② 65 1/3の逆関数の導関数を求めよ。 (2)/(x)=- の逆関数f'(x)のx=1 x+1 (3) 次の関数を微分せよ。 合成関数の微分。 65 における微分係数を求めよ。 [ (イ) 広島市大] 1 (ア)y= 2 (1) y=√2-x3 (ウ) y= x-1 p.115 EX 50, 52 x+1

解決済み 回答数: 1
数学 高校生

(3)について質問です。 右の画像の赤線部のように変形できるのはなぜですか?🙏

礎問 108 面積 (IV) mを実数とする. 放物線y=x2-4.x +4 ...... ①, 直線y=mx-m+2...... ② について,次の問いに答えよ. (1)②はmの値にかかわらず定点を通る. この点を求めよ. (2) ①,②は異なる2点で交わることを示せ. (3) ①,②の交点のx座標をα, B(a<B) とするとき,①,②で囲 まれた部分の面積Sをα, β で表せ. (4)Sをmで表し, Sの最小値とそのときのmの値を求めよ. 精講 S (1)37 ですでに学んでいます。 「mの値にかかわらず」とくれば, 「式をmについて整理して恒等式」 と考えます。 (2) 放物線と直線の位置関係は判別式を利用して判断します. (3) 106ですでに学んでいますが,定積分の計算には101 (2) を使います. (4)21 (解と係数の関係) を利用します。 解答 (1) ②より m(x-1)-(y-2)=0 電について整理 これがmの値にかかわらず成立するとき, x-1=0,y-2=0 異なっていても定 (弐)-(下 よって,mの値にかかわらず②が通る点は,(1,2) (2) ①,②より,yを消去して, x2-4x+4=mx-m+2 :.x²-(m+4)x+m+2=0 判別式をDとすると, <D> を示せばよい D=(m+4)2-4(m+2) =m²+4m+8 YA =(m+2)+4>0 よって、 ①と②は異なる2点で交わる. (1) 2 (3)右図の色の部分がSを表すので S=f" (mx—m+2)—(x²-4x+4)}dx x 0 a 1 2 Bx

解決済み 回答数: 2