学年

質問の種類

数学 高校生

(1)の解答の最後の式の−1する理由が分かりません。 どなたか教えて頂けますと幸いです! よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., A12 を頂点とする正十二角形が ある. この頂点のうち3点を選んで三角形を作るとき, 0 次の個数を求めよ. (1) 二等辺三角形 (2)互いに合同でない三角形 20 A12 *** A1 A2 A3 A11 A4 A10 A5 A9 As A A6 分線について対称になる. 考え方 (1) 二等辺三角形は、右の図のように底辺の垂直二等 ま A1 つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. I A10 # A1 A12 について同様に考えれば,個数を求める ことができるが, 正三角形になる場合に注意する. (2) 頂点間の間隔に着目する. 右の図のように①と②は合同 状 ①と③は合同でない. 0101 012 200s 0.05 解答 (1) A, を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 Q # A4 正三角形は他の から見ても二等 角形なので (A2, A12), (A3, A11), (A4, A10), (A5, A9),セは て数えてしまう A9 A5 coolco (A6, A8) の5通りの A7 頂点は12個より, 5×12=60 (個) 03 このうち, 正三角形となる4個の三角形は3回重複正三角形とな 〇〇〇して数えている。 (A1, A5, Ag か 18 よって 60-(3-1)×4=52 (個)合 (A2, A6. Al (2) 1つの頂点をへ

回答募集中 回答数: 0
数学 高校生

(1)の解答にある最後の式の−1をなぜするのかが分からないです! どなたか教えて頂けますと幸いです。よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., ある。この頂点のうち3点を選んで三角形を作るとき, A12 を頂点とする正十二角形が A12 A1 A2 A1 A3 A10 AA A9 A5 次の個数を求めよ. A8 A7 A6 (1)二等辺三角形 (2) 互いに合同でない三角形 分線について対称になる. 方 (1) 二等辺三角形は、 右の図のように底辺の垂直二等 A₁ A1 A12 について同様に考えれば,個数を求める つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. 0 A10 # # AA T T ことができるが,正三角形になる場合に注意する. 3 (2) 頂点間の間隔に着目する. ① 右の図のように①と②は合同 で,①と③は合同でない. 695 01 01st 2000s 05.05 ■ (1) A」 を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 (A2, A12), (A3, A11), A1 (A4, A10), (A5, A9), Ag AA5 正三角形は他の から見ても二等 角形なので重 て数えてしまう blood (A6, A8) の5通り A7 頂点は12個より, 5×12=60 (個) して数えている。 このうち, 正三角形となる4個の三角形は3回重複 正三角形とな A5, Ag (A1, よって, 60-(3-1)×4=52 (個) (A2, A6, Al 2) 1つの頂点をへ

回答募集中 回答数: 0
物理 高校生

これの(2)と(3)が解説を読んでも分からないので教えて頂きたいです!!

基本例題 2 速度の合成 4,5,6 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船で 移動する。 2.0m/s 2.0m/s (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 t [s], t2 [s] をそれぞれ求めよ。 a (4) 13060m 72m A (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0 の値を求めよ。 ◆(3) (2) のとき, 川幅60m を横切るのに要する時間 t [s] を求めよ。 BAの向きに 4.0+(-2.0)=2.0 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが, 川の流れと垂直になればよい。 解答 (1) 上りのときの岸に対する船の速度は 72 [注] 川を横切る船は, へさきの向きとは 異なる向きに進む。 Q R 60° 2.0 (3)合成速度の大きさを v [m/s] とすると, 4.0m/s v 60% 直角三角形の辺の比より P2.0m/s v=2.0x√3m/s m/s だから= =36s 下りのときの岸に対する船の速度は ABの向きに 4.0+2.0=6.0m/s 72 6.0 だから t2= -=12s (2) 船が川の流れに対して直角に進むの で,右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで △PQR は辺の比が1:2:√3の直 角三角形である。 よって 0=60° この速さで60mの距離を進むので 60 t=- 2.0x√3 60×3 2.0×3 -=10√3s ここで,√31.73 として t=10×1.73=17.3≒17s [注 √3=1.732 ··· や, 21414... など の値は覚えておこう。

回答募集中 回答数: 0