学年

質問の種類

物理 高校生

エッセンスに載っているコンデンサー回路の電位による解法は、「直列並列で解けないとき用いる」と書いてあるんですが、あまり使わない方がいい理由があるんですか?

9:38 1 58 必殺技・ ●電位による解法 電位を用いてコンデンサー回路を解く 1 適当に0V をとり、 回路の各部分の電位を調べる。 孤立部分について電気量保存の式を立てる。 N all 4G 45 [解説] 複雑な回路になると並列や直列に分解できなくなる。どん な場合にも対処できる方法の話をしよう。 まずはその準備から。 容量Cのコンデンサーがある。 極 板Aの電位をx (V), B の電位をy [V] とすると,A上に ある電気量は符号を含めてQ=C(x-y) と表される。 なぜなら,xyならA上には正の電荷があるはずで電位 差はV=x-yだから Q=CV=C(x-y) 反対に、 x<yならA上には負の電 荷があるはずで、電位差はV=y-xだから QA = CV=-C(y-x)=(x-y) 結局, 上の式は x,yの大小関係によらず成り立つ (x=yのときのQ=0 を含め て)。 x-yでは扱いにくいから, (考えている極板の電位) (向かい合った極板の電 位), もっと簡単に, (自分) - (相手) と覚えてしまおう。 ある極板上の電荷=Cx (自分一相手) EX 1 10μFのコンデンサーの電圧Vはいく 10μF らか。 また. 20μFのコンデンサーの左側 ト 極板の電気量Qはいくらか。 100 v/ 1°F 電位 この式は符号を含めて成立しているから, 孤立部分のすべての極板について 和をとれば電気量保存則が用いられる。 電位が求まれば、 コンデンサーのすべて 電位差, 電気量,静電エネルギー・・・が計算できる。 × +120μF 30μF y 40 V

回答募集中 回答数: 0
物理 高校生

高校物理過渡現象の問題です。 (6)の考え方は一通り理解できたつもりなのですが、二つのコンデンサが等電位になっているのに、電流が流れ続けるのが少し引っかかりました。図cを見る限り、電位差がなくなった後、コンデンサ3に電流が流れ込みいっぱいになったら今度はコンデンサ2に電流が... 続きを読む

法則ⅡIより / Vo+VL-0=0 よって VL=-12/Vo *B コイルに加わる電圧の大きさは 1/2vo AIL Vo (5) VL-24 だから12/2014/1 4t よって 12 4t 2L また、自己誘導が電流の流れを妨げるから、 電流は 0 AIL (6) コンデンサー C3 に流れこむ電流Icの変化は, 電気振動で示されるから, ス イッチ S2 を閉じた時刻を t=0, 電流の最大値を IM として, 図cのように表 される。 直列回路より電流は共通であるから, C3 に流れこむ電流が最大の とき, コイルに流れる電流も最大となる。 電流が最大のときは電流変化が 0 よりコイルの電位差が0であるから ※C, C2, C3 の電圧は等しく、その電圧 をVとすると, 電気量の保存より 12/23CV +0=CV+CV よってV=1/2vo ゆえに,C』に蓄えられている電気量Q3は Q321/Cro エネルギー保存より 1 c. (v.)² +0=1 c · (v.)³×2+LIM² LIN²=12/2CV32 よってIw=1/12/0 C 4 L L 12/12/10 =1/12/0 +CV. C₂ 1/12 Cro 図 d Ic IM O m VL 図 b ◆B コイルの左側が高電 位となる。 12/12/0 o(E C30 +CV C2 -CV 0 C3 *C V₁=-Lt AIL 4t fi 図 c AIL -= 0 だから Vi=0 L IM 図e C3 +CV V: -CV 物理重要問題集 151

回答募集中 回答数: 0
物理 高校生

写真の赤線部では交流回路でのコイル、コンデンサーはそれぞれ (電圧の実効値)=(リアクタンス)×(電流の実効値)という式が成り立つと書かれていますが、この電流電圧の実効値は抵抗を流れる電流と同じ(最大電圧(流)の1/√2倍した)数値ですか?最大電圧(流)を1/√2倍したもの... 続きを読む

■コンデンサーのリアクタンス 式(27)より、Io=ωCV であるからwC=- 1 とおいて Vo=X。 と表 Xc すと、電流の最大値 Ⅰ と電圧の最大値 V。 との間には, オームの法則と類 似の関係が成り立っており, Xc は電気抵抗に相当する物理量となってい -p.250 ることがわかる。 このXc をコンデンサーのリアクタンス (容量リアクタ ンス)といい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コンデンサーのリアクタンス 1 (28) XcwC 式(24)より、Io= Xc [Ω] コンデンサーのリアクタンス w [rad/s] 角周波数 C〔F〕 電気容量 コンデンサーでは, 角周波数 ωや電気容量Cが大きいほどリアクタンス 小さくなり, 電流は流れやすくなる。 また, 電圧の実効値 Ve と電流の 効値との間にも同様に,Ve=Xce という関係が成り立つ。 コイルのリアクタンス Vo であるから,wL=Xとおいて Vo=X。 と表す WL と、電流の最大値と電圧の最大値 V。 との間には,オームの法則と類似 の関係が成り立っており, XL は電気抵抗に相当する物理量となっている reactance ことがわかる。 このXL をコイルのリアクタンス (誘導リアクタンス)と いい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コイルのリアクタンス XL=wL (25) XL,[Ω] FELL FAC コイルのリアクタンス w [rad/s] 角周波数 hata To 4 10 L [H] 自己インダクタンス スが大きくなり, 電流は流れにくくなる。 また, 電圧の実効値 V と電 実効値との間にも同様に, Ve = Xile という関係が成り立つ。 コイルでは, 角周波数や自己インダクタンスLが大きいほどリアクタ

未解決 回答数: 1
物理 高校生

写真の青線部についてですが、誘導起電力がは電源の電圧と等しくなる。これはキルヒホッフの法則から言えることだと思うのですが、ここで疑問なのは、なぜ電池と誘導起電力は図のように打ち消し合うような向き? にかかっているのに、電流は流れるのですか?電池の+極どうし、-極どうしを繋げ... 続きを読む

(2) コイルの磁気エネルギー 10 で、 コンデンサーの静電エネルギーU=1212CV2=120262の式を Q2 導くときに,コンデンサーを電気量が0CからQ [C] まで充電するの に投入した仕事を計算することで説明したね。 同じようにコイルの電流を0AからⅠ[A] まで増やすときに,電源 が投入する仕事を計算することで, コイルの磁気エネルギーの公式を 導いてみよう。 まず、図13の回路で特殊な電 源によって, 自己インダクタンス Lのコイルに,図14のように時刻 t とともに増大する電流żを強制的増加させる に流していこう。 このとき, コイルに発生してい る誘導起電力Vは, POONTO (p.244) の式より, di dt 図14のi-tグラフの傾き V = L =Lx I [A][増加 T〔s] で 電源 V 図14の 三角形 の底辺 図 13 dt T 電流 ( 1秒あたりに通過する電気量) I傾き i 増加イヤ! T V これは、図13より, 電源の電 圧Vと等しいね。 図 14 一方,このt=0からt=T〔s] ま での間に,電源が「持ち上げた」 電気量をQとするよ。 この電気量Q は図14の, i-tグラフの下の面積と等しいので, Q=(図14のi-tグラフの下の面積) =1/12/201 xTxI...② 高さ i-tグラフの 下の面積は 通過電気量Q 時刻 第19章 コイルの性質 251

未解決 回答数: 1
物理 高校生

「コンデンサーに金属板を挿入したら金属板の厚み分、コンデンサーの極板間隔を減らすという効果」が得られますが、写真ではなぜそのようなことがいえるのかの証明?導出? が書かれています。ここで質問なのですが、写真の説明は金属板の挿入前後で電気量が変わらないことを前提に説明している... 続きを読む

220 極板間への金属板や誘電体板の挿入 極板間に金属板や誘電体板を入れるとコンデンサーの電気容量が増す。 (I) 金属板の挿入 図1の + Q, - Qに帯電した 極板 AB間 (容量 C, 間隔 d) に, 帯電していない厚さDの金属板 を入れると静電誘導により図2の ように - Q, +Q の電荷が現れ る。 A+ + + + Q Bl + E Q=CV V=Ed 17 V=Ed と d=d+D+ d より V'= Q=C'V' と Q=CV より Q C'=- = A+ TMNE d₁ == dz -V(d-D) V' d-D B 図2 + + +Q E E -Q 図 1 金属 (導体) の中の電場は0であり, 電気力線が通らない。 A の +Qから出 た電気力線を全部吸い取るために, 金属板の上の面にQが現れるわけだ。 このとき電場Eは変わっていないことに注意したい (Q一定はE一定)。 D 変わったのは AB間の電位差であり,V'=Ed+Ed2=E(d+d2) 20S C = ε =² +Q Q=C'V' V' = E(d₁+d₂) du ES -C=- d-D Not この結果は, 極板間隔がd-D のコンデンサーと同じ電気容量になったこ とを示している。 金属板の厚み分だけ間隔が減ったとみてもよい。 金属板を 入れる位置は任意であることもわかる。 電圧もしに応じて変わる.18

未解決 回答数: 1