学年

質問の種類

化学 高校生

例題1、途中の式からどうやってxを求めるのか全くわからないです😭教えてください🙇🏻‍♂️

2 3 4 溶解度 [g/100g 水] solubility curve ●溶解度曲線図8は溶解度と温度 の関係を表したもので,溶解度曲線 とよばれる。固体の溶解度は,ふっ う温度が高くなるほど大きくなる。 D ② 70℃の水 100g に硝酸カリウム 40gを溶かした溶液を冷却してい くと,約何℃で飽和溶液になるか。 図8を参照して答えよ。 C いい、結晶中の水分子を 水和水と hydration water 割合で含んでいる物質を 水和物と 水和物 結晶中に水分子を一定の すいわぶつ hydrate 図8 溶解度曲線 100g いう。水和物の溶解度は,水 100g に溶ける 無水物 (水和水をもたない むすいぶつ せきしゅつ 100 90 80 70 硝酸カリウム KNO 60 50 40 塩化カリウ KC 30 201 CuSO4 塩化ナ 10 硫酸銅(Ⅱ) 0. 0 復習 10 20 30 40 50 60 70 温度 [℃] 「g/100ga g当たりに溶ける溶質の質水 再結晶 硝酸カリウム KNO 60g に硫酸銅(II) (無水物) CuSC 6g が混ざった混合物があるとす これを高温で100gの水に溶か た後,溶液を冷やしていくと, 液の温度が38℃で KNO につ 飽和溶液になる。さらに20℃ 図90 冷やしていくと, KNO3 の結 新出してくるが,CuSO 物 CuSO5H2Oのように水和物の結晶になっているが,その溶解度 合物)の質量[g]で表す。 例えば硫酸銅(II)は,ふつう硫酸銅(Ⅱ)五 無水物である CuSO, の質量で表す。 例題1 水和水をもつ物質の溶解量 硫酸銅(II) 五水和物 CuSO45H2O は, 60℃の水 100g に何g溶ける 15 整数値で答えよ。 ただし, 硫酸銅(II) CuSO4 は60℃の水100gに40g 溶けるとする。 (H = 1.0, O = 16, S = 32,Cu=6A 溶ける CuSO4・5H2Oの質量をx[g] とすると,そのうち CuSO4が 解 指針 CuSO4・5H2Oの質量を x [g] として, CuSO4の質量を x を用いて表す。 160 x 250 90 250% CuSO4 5H₂O 160 x[g] H2O が x[g]. 250 90 250 飽和溶液中の溶質と溶液の質量の比は一定なので, x 図9② は析出しない。 図93 このように,温度により 溶液を冷却していくと溶 作を再結晶といい,物質 recrystallization 結晶をろ過で集めて少量の 例題2 再結晶 硝酸カリウムの飽 何gの結晶が析出 水 100g に 10℃ 20 解 指針 高温でつくっ 溶液の質量」 水 100g を用い m | 3%, (110g- から析出する 析出量 160 x[g] 溶質の質量[g] 飽和溶液の質量[g] 250 40g 飽和溶液の = = 100g+x[g] 100g+40g x≒81g 81g 25 類題1硫酸銅(Ⅱ)五水和物は,20℃の水 200g に何g 溶けるか。整数値で答え よ。ただし,硫酸銅(II)は20℃の水100gに20g 溶けるとする。 類題 2 硝酸カリウ 何gの結晶 水 100g に (H = 1.0, O = 16,S=32,Cu= 64) 1 高温の溶液を冷却 D 水酸化カルシウム Ca(OH)2 の溶解度は,温度が高くなると 2水和物が水に溶解したとき,水和水

回答募集中 回答数: 0
英語 高校生

緊急です! この1ページの答え教えてください🙏

(教科書 pp.52-59) Unit 4 Is your city sustainable enough? star n = 1. The Can- Do! Speak 都市問題について聞いた情報をもとに説明することができる。 都市問題を解決する方法について議論することができる。 Write 自分の住む地域の自治体に要望書を書くことができる。 Small Talk 4) How is the building in this picture different from an ordinary house? Do you think your town is comfortable for you and people of all ages? banihobnu Listen ai "but won" ansom bidro coll Riko and her cousin Yuri are talking online (Yuri is now a college student studying in Vauban, Germany). Listen to the conversation and fill in the blanks. Riko col mont hio daw blow ch Vauban Buildings: ⚫designed to consume less [ Cars: .2[ ]% of the residents: don't have a car the public transportation service ⚫not allowed to [ ] in the residential areas children: play safely in the [ ] Yuri is related Listen Again 1) Listen again, and fill in each blank below. 2) After that, choose one similar expression from (a) to (c). Communication Strategy ① 久しぶりに会った相手にかける言葉は? Riko: Hi, Yuri. How's your college life in Germany? (c) What's up? pane (a) It's a pleasure to meet you. (b) Long time no see. Communication Strategy ② 話題にさらに論点を加えるには? Yuri: Trams run every seven minutes along the main road, and residents have easy access to the stops. so that children can play safely in the streets. (a) Finally cars are not allowed to park in the residential areas (c) On top of that (b) In other words Sp You (@ in the wor haring ex 4210. and th Mbuisn Expla de6 eftor

回答募集中 回答数: 0
物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
数学 高校生

【2】からよく分かりません。また、【3】でどうしたらS🟰の式がこのようになるのか教えて頂きたいです。

172 第6章 分 間 110 面積(M) 放物線y=a12a+2 (0<</2/2) ………① を考える。 精講 (1) 放物線 ①がαの値にかかわらず通る定点を求めよ。 ...... (2) 放物線①と円+y2=16 ② の交点のy座標を求めよ。 (3)a=1/2 のとき,放物線 ①と円 ② で囲まれる部分のうち、放物 線の上側にある部分の面積Sを求めよ. (1) 定数α を含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは,式を α について整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます。が、 E (3) 面積を求めるとき,境界線に円弧が含まれていると,扇形の面積を求める ことになるので,中心角を求めなければなりません.だから,中心Oと交点 を結んだ線を引く必要があります。もちろん,境界線に放物線が含まれるの で,定積分も必要になります. (2) 解答 し (1)y=ax2-12a+2 より a(x²-12)-(y-2)=0 これが任意のαについて成りたつので 2-12=0 ly-2=0 :.x=±2√3,y=2 よって, ①がαの値にかかわらず通る定点は (±2√3, 2) |y=ax²-12a+2... ① x²+ y²=16 ......2 ②より,㎡=16-y^だから,①に代入して αについて整理

回答募集中 回答数: 0