学年

質問の種類

英語 高校生

高1英語grammar話法についての説明なのですが、 水色マーカーの文において、なぜknowは現在形なのにwasは過去形になっているのでしょうか。 時制の一致が行われていない気がしています。 解説をお願いします。 (どんな時に合わせないのかが分からないです。)

S 1 時制の一致 1. I know (that) Tom is tired. 2. I knew (that) Tom was tired. 3. I know (that) Tom was tired. 4. I knew (that) Tom had been tired. 11 時制の一致の原則: 主節が表す時制が基準となって, 従属節の動詞の形が決まる。 主節の動 過去形であれば,それに合わせて従属節の動詞も過去形 (2) や過去完了形 (4) になる. 時制の一致と助動詞 BASER 注意 la) 過去形になるもの: will would, shall→should, can→could, may might I am afraid that I may hurt her feelings. →I was afraid that I might hurt her feelings. b)変わらないもの:should, must, need, had better, ought to, used to 2 時制の一致の例外: 次のような場合,原則として 「時制の一致」 は適用されない. 5. We learned that the earth goes around the sun. 6. Jim said that he jogs every morning. 7. He didn't know that World War ⅡI broke out in 1939. a) 真理・ことわざ (5) : 時に関わらず不変の事がらなので、 現在形のまま b) 現在も変わらない事実習慣習性(→6): 現在形のまま C) 歴史上の事実 (7) : 過去に起こったということが明らかなので、 過去形のまま d) 仮定法: 非現実のことを述べるので,主節の時制の変化による影響を受けない. He says that he would become a poet if he were born again. + He said that he would become a poet if he were born again. 11 斜体の 1) Jim 2) Yuji 3) She 4) I we 5) I he 6) I se 7) My 8) I t 2 次の 1) M 2) A 3) M 4) 5) 6) 3 1

未解決 回答数: 1
物理 高校生

物理、ばね、つり合い この問題の問5についてです。模範解答では、つり合いの式「mg+k(a+x)-N=0」から考えて導いていたのですが、私は物体A+B(2mg)とばね定数(k=mg/a)がつり合うことを考えて「F=kx」より「2mg=k・b」という式で答えを導きました。答え... 続きを読む

con 付け, ばねを鉛直に立てて, B を水平な床面上に置いたところ, ばねが自然の長 図5(a)のように, 軽いつるまきばねの両端に同じ質量mの物体A, B を取り さより だけ縮んだ状態でAが静止した。 B 図5(b)のように, A をつり合いの位置からさらにaだけ押し下げて静かには なすと,Bが床面に静止した状態でAは鉛直方向で単振動を行った。 重力加速度 の大きさをgとする。 kazmy 自然の長さ A m Bm 問3 次の文章の空欄 それぞれの直後の { 3 4 ばね 体Aの単振動の周期は つり合いの位置 床面 このばねのばね定数は 3 4 . my (hea) mg a 図5 mg ① 2a 3 }で囲んだ選択肢のうちから一つずつ選べ。 ② (3 1 2π 4 に入れる式として最も適当なものを, ② 2 mg a 2mg a A 2g a 9 2a Ng m ③2. m (b) a である。 したがって 物 kimg a Taza Foz となる。 T = 2h ^. kw. 厚 鹿 ひこ 問4 Aが図5(a)のつり合いの位置を通過するときの速さを表す式として正しい 5mg 5 ものを、次の①~⑤のうちから一つ選べ。 = Jag mad ① vga 2 0 √2a ga 3 my = my ² a mgenue 3 Mitwir acro ² F 問5 次にAを図5(a)のつり合いの位置から押し下げる距離を6にして静かに はなした。このとき,Aの運動中にBが床面から離れないためには,b はい くら以下でなければならないか。 最も適当なものを、次の①~⑥のうちか ら一つ選べ。 b≦ 6 a zyw² n² ③ ga 2 4 √ga 2ning=nox(base) begy 『 22 5 √3ga zazlatyu 3 √3a 42a ⑤ 15 2 6⑥ 3a

回答募集中 回答数: 0
数学 高校生

数列{Pn-1-Pn-2}の一般項を求めるのと 数列{Pn+1-Pn}の一般項を求めるのは同じことですか? (2)のPnを出す際に行き詰まりました。 お助け願います🙏

Che 例題 310 漸化式と確率 (3) BASE **** 数直線上を原点から右(正の向き) に硬貨を投げて進む.表が出れば1 進み,裏が出れば2進むものとする.このようにして,ちょうど点nに到 達する確率をpn で表す.ただし, nは自然数とする. (1) 3以上のnについて, n と D-1 D-2 との関係式を求めよ. (2) (n≧3)を求めよ. 「考え方(1)点nに到達するのは,次の2つの場合が考えられる. ¯¯¯(ii)- (i) (n-1)に到達して、 表が出る. immmmii mmmmm (ii) (-2)に到達して、裏が出る. 解答 Focus - (1) 点nに到達するのは,点(n-1) に到達して表 ++ が出る場合か,点(n-2) に到達して裏が出る場 mmmm in 合である。よって, n≧3のとき, 1_1 m-1--1/7/2 2 2 1 (2) pn=1/21pn-1+1pn-2 を変形して, Þn— --2 Pn+ 1² Pn-1=Pn-1 + 1/ Pn-2 1 2' p= Pn=Pn-1°¯ P₂=- 3 + Pn-2- -pn-1+1/2 pn-2 4 初項 pz-p= = 1,公比 RS だから,数列{bn+1-pn} は, 1/23の等比数列となり, n+1 132 n-1 Pn+1-pn=1 -(-2) ² - ¹ = (-2) ・① 数列{bn+1+1/12/0} は隣り合う項が等しいから n-2 3 Pn+1 + 1/ Pn=D₂ + 1/2 P₁ = ³ + ²2-12- p 4 よって、①,②より, p=//{1-(-1/2)^2} AABOUT βとして n-1 (n-1)+1→n m 特性方程式 (n-2)+2→n(1) 裏 3項間の漸化式 (京都大) →n x² = 1/2x + 7/12/2 -x -(i)- の2解x=- 1 を α, 2' 3 p2=pi + pn-apn-1=B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1 1 点nに到達する1回前の試行に注目して漸化式を作る HOMENS n 1 2 22 2 \ n +1] = 1; = P₂+ = 1 1 Pn+1+₂ Pn=Pn+ 2 Pn-1 +1/201 P₁+ x DE AARDE

回答募集中 回答数: 0
物理 高校生

オのところで-k(x-x1)が成り立つ時単振動の中心がx1であるのかを教えてほしいです

" 85 ゴムひもによる小球の運動■ 次の文中の を埋めよ。 図のように、屋根の端に質量の無視できるゴムひもで小球をつな いだ。 小球を屋根の位置まで持ち上げてから 落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きにx軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方, x > L のとき, ゴムひもは伸 びて張力がはたらき ばね定数kのばねとみなせる。 小球は鉛直方向にのみ運動し, 地 面への衝突はないものとする。重力加速度の大きさをgとする。 小球を屋根の位置(x=0) から静かにはなして落下させた。 x=Lの位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると, x1=イである。x=xでの小球の速さは,v=ウであ る。さらに小球は下降し、 最下点に到達した後, 上昇した。 最下点の位置をxとすると X2=エである。 また, 最初に x1 を小球が通過してから最下点を経て、再び x にも [18 明治大] 77,78 である 日 屋根 + -0 x

回答募集中 回答数: 0