学年

質問の種類

数学 高校生

大学受験の過去問です。回答教えて欲しいです!

次の問題1 は 1 以下の問いに答えよ。 の中に解答を書くこと。 (1) a,bを実数として、 複素数 1-v 1+V2 (2) 2次方程式2+3c-1=0の2つのをaとするとき, of af +82= ある。 また、公差は fo (3) 初境が6で未項が16の等差数列があり、 すべてのが90 となるとき、数は のは の形に表すと、 である。 特式f(d=22-5-3 を満たす関数f(x)は である。 である。 - である。 212 3 人 となる。 (5) Blogs logs 50g 計算すると / である。 また, log2 5 x logs 3 x log」 8 を計算すると 3 wysostora. のとき、y=cos 20 +2sin 01 の最大値は である。 また、 5回投げたとき、点Pが1より右の位置にいるは 15 3 (6) 出たときは左へ2だけ進むものとする。さいころを3回投げたとき、点Pが点いる確率は である。 で 定数aの値は である。 また、そのときの (7) 数直線上で、点Pは点Oを出発し、さいころを投げて4以下の目が出たときは右へ」だけ進み、他の目が 3 である。 次の問題 2 は卵に至るまでの計算過程を書くこと。 20h=(2,-1),OB=(1,3), 06 (7,7) のとき、次の問いに答えよ。 T (1) a, B を実数として、0+801と表すとき,の値を求めよ。 (7.7)=d(2,-1)+B(1,3) 7=0+3B7=-X+9 d=2、B=3 △OAB において、辺ABと直線OCの交点をPとするときを実数としてOP=OCとせるの 値を求めよ。 (2) 直線BC上を点Qが働いて行くとき, PC が最小となるような点の座標を求めよ

回答募集中 回答数: 0
数学 高校生

(1)数列の和から一般校を求めるやり方ですが このやり方だと、snとsn-1の差から公差を求めているので等差数列しかもとまらなくて階差や等比の場合にはもとまらなくないですか?

446 解答 0000 基本 例題 24 数列の和と一般項, 部分数列 |初項から第n項までの和SnがSm = 2n²-n となる数列{an} について (2) 和α+a+as+ +αzn-1 を求めよ。 p.439 基本事項 基本4 (1) 一般項an を求めよ。 指針 (1) 初項から第n項までの和Snと一般項an の関係は n≧2のとき Sn=a+a+ -) Sn-1=a₁ + a₂+. Sn-Sn-1= (1) n ≧2のとき +an-i+an an よって an=S-Sn-1 n=1のとき a1=S1 和 Smがnの式で表された数列については,この公式を利用して一般項an を求める。 (2) 数列の和 まず一般項 (第k項) をんの式で表す .... 第k項 .......+an-1 第1項、第2項,第3項, a1, a3, a5, a2k-1 であるから, an に n=2k-1 を代入して第k項の式を求める。 なお, 数列 a1, A3,A5, ....., azn-1 のように, 数列{an} からいくつかの項を取り除 いてできる数列を, {an}の部分数列という。 =4n-3 ① an=Sn-Sn-1=(2n²-n)-{2(n-1)²-(n-1)} また a=Si=2・12-1=1 ここで, ① において n=1 とすると よって,n=1のときにも ① は成り立つ。 したがって an=4n-3 (2)(1)より, 2-14(2k-1)-3=8k-7であるから ...... α=4・1-3=1 n atastat...... +a2n-1=22k-1=2 (8k-7) k=1 n k=1 = 8. n(n+1)=7n =n(4n-3) S=2²-nであるから Sn-1=2(n-1)²-(n- 初項は特別扱い am はn≧1で1つのボ 表される。 a2k-1 lan=4n-31 いてぃに2k-1を代 の公式を利用 n≧1でan=S-S-」 となる場合 例題 (1) のように, an = Sn-Sn-1 でn=1 とした値と α が一致するのは, Smの式でn= 検討 したとき So=0 すなわち n の多項式 Sn の定数項が 0 となる場合である。 もし、 Sn=2n²n+1(定数項が -S-S1-1=4n-3(n≧2))) り SPEE

回答募集中 回答数: 0
数学 高校生

空欄テ,ト、ナ,ニ、ヌ,ネ,ノについてです。 2枚目にも書いているように、私は両辺に6を掛けてから計算したのですが、項数求めるところでn²>1428となり答えがあいません。何が間違えているのか分からないのでよろしくお願いします。見にくくてごめんなさい。

数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) 次のように、1から始まる1個 2個 3個の奇数の列を順に並べてできる 数列 1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, ... U 5個 1個 2個 3個 4個 を {an} とする。 この数列を、次のように群に分け、順に第1群, 第2群,第3群, ..….とする。 1 |13|1,3,5 |1,3,5,7|1,3,5,7,91, ….. 第1群 第2群 第3群 第4群 第5群 ここで,nを自然数とするとき,第n群はn個の項からなるものとする。また, jkを自然数とし、第n群に含まれる項α)と同じ値の項が,第1群から第n群ま でにちょうどk個あるとき, 第n群に含まれる項a, を 「k回目に現れる α;」のよ うに表現する。例えば、第5群の2番目の項である3は数列{an}の第12項であり, 「4回目に現れる3」 のように表現する。 1.3.5.7 +2+2 (配点20) (1) 第n群の最後の項をnを用いて表すと は数列{an}の第 である。 とき回目に現れる1は数列{an}の第 21 { n (l+n) Shinti 10回目に現れる1は数列{an}の第市 項である。また,kを自然数とする 第9項さいごは、anの3×9×10=45 1 1 -k²- オ) カ = k (k-1) + 1 = = = K²=-=- k + 1 項である。 第n群に含まれる項の和は に現れる1までの和は 1 ケ (-1)(1+R-1)+1 -k³ 項である。 +1 -k² + =1+(n-1)2=20-2+1 であり, 1回目に現れる = n 1 サ =20-1 であるから、数列{an}の初項からk回目 n(x+2n-1)=½nxxn = n² =k+/ =k+ */ //(k-1)(2R-2+1) (数学ⅡⅠ・数学B 第4問は次ページに続く。) -32 + (k-1)k (2k-1) 11 ( ア の解答群 On-1 1 ク (n-1)² Ⓒ/n(n-1) ②n+1 76 (2) を自然数とするとき、1回目に現れる3は第 の解答群 (同じものを繰り返し選んでもよい。) ①n² ② (n+1)^ Ⓒ/ n(n+1) ⑤/1/21(n+1 +1)(n+2) ⑩ 1/12n(n-1)(2n-1) ⑦/1/n(n+1)(2x+1) ③ / (n+1)(n+2)(2n+3 ) あり, N ヌネノである。 3 2n-1 2022 ({R-ÉR) (²k-1)/12138 2 2 ~ 3 k²³² - / k²= 1/k² + (k = {K² - {k² + ék 110 21 220 2310 目の項であり、数列{an}の第 チ ·(1+0) 31+z²+2 f (3) 数列{an}の初項から第n項までの和をSとする。 S>2023 となる最小のn をNとすると、数列{an}の第N項 αN は第 群のナニ番目の項で 第群に含まれる項の和r². 初項から最後までの保和は、 ////(m+1)(2m+1 数学ⅡⅠ・数学B -1² + 42n+1 タ グマ ス ·1+ 群の to 番 2 項である。 17万 {m(mer) (2mi+1) >2023 6m(+1)(2nit1) (m+1)(24ct() >1 m=18のとき12654> 121 m=1710710 <120 x 1934×12 1386

回答募集中 回答数: 0