学年

質問の種類

数学 高校生

赤線引いたところの3C2ってなんですか?🙇‍♂️

mx35 重要 例題 50 平面上の点の移 右の図のように, 東西に4本, 南北に4本の道路が ある。 地点Aから出発した人が最短の道順を通って 地点Bへ向かう。 このとき,途中で地点Pを通る確 率を求めよ。 ただし, 各交差点で, 東に行くか、北 に行くかは等確率とし,一方しか行けないときは確 率1でその方向に行くものとする。 CHART & THINKING 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から、 4C3X1 6C3 とするのは誤り! この理由を考えてみよう。 4 基本 48 G n 返 (1) は、どの最短の道順も同様に確からしい場合の確率で,本問 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。 例えば, A1 P11Bの確率は 1/2×12×12×1/2×1×1=16 A1P11Bの確率は 1/2×12×1/2×11×1=1/3 A B よって,Pを通る道順を, 通る点で分けたらよいことがわかるが,どの点をとればよいだろ うか? 解答 右の図のように, 地点 C, C′', P' をとる。 A-A Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順 AC′ →C→P→B この確率は 1/x1x1/2 2X1X [2] 道順 AP'→P→B B P' P A CC この確率は1/2)(1/2)x1/12×1×1=216 1 3 よって、求める確率は 8 16 5 16 × |C→Pは1通りの道順であ 注意 [1] →→→↑↑↑と進む。 [2] ○○○ ↑↑と進む ○には2個と↑1個

解決済み 回答数: 1
数学 高校生

黄チャートの数Aの例題33(3)なんですけど、なぜ左右対称になるものをもとめる必要があるのですか?

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個,透明なものが1 個ある。玉には,中心を通って穴が開いているとする。 (1) これらを1列に並べる方法は何通りあるか。 (2)これらを円形に並べる方法は何通りあるか。 (3)これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。 固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3) 「首輪を作る」 とあるから,直ちに じゅず順列=円順列÷2 でよいだろうか? すべて異なるもの なら, じゅず順列で解決するが,ここで は、 同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 000 左右対称 裏返すと同じ人 01 解答 (1) 1列に並べる方法は 9! 6!2! 9・8・7 2.1 =252 (通り) 同じものを含む順列。 (2) 透明な玉1個を固定して, 残り8個を並べると考えて 8! 8.7 -=28(通り) 6!2! 2.1 (3)(2) 28通りのうち, 図 [1] のように 左右対称になるものは 4通り よって、 図 [2] のように左右対称でない [1] 円順列は 28-424 (通り) [2] この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 2 4+- =16(通り) PRACTICE 33° AL 307 1章 ◆赤玉6個、黒玉2個を1 列に並べる場合の数。 inf (2) について 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 BACURE 13A8 A8 3 組合せ 7 通り,円形に並べる方法は 輪を作る方法はウ通りある。 白玉が4個、黒玉が3個, 赤玉が1個あるとする。 これらを1列に並べる方法は 通りある。更 更に,これらの玉にひもを通し, [近畿大]

解決済み 回答数: 1
数学 高校生

この正四面体で、B,E,Dが一直線上にあるってどういう事なんですか?見る角度によってEの位置変わらないんですか?🙇‍♂️

224 重要 例題 141 四面体上の折れ線の 四面体 ABCD があり, AB=BC=CA=8, AD=7 である。 COS ∠CAD= 11 1/4 のとき,次のものを求めよ。 (2) ∠ACD の大きさ (1) 辺 CD の長さ 基 (3) AC上の点Eに対して, BE+ED の最小値 CHART & THINKING 空間の問題 平面図形 (三角形)を取り出す (1), (2) 求めるものを含む三角形はどれかを 見極めよう。 (1) (2) 辺 CD, ∠ACD を含むのはACD (3)空間のままでは考えにくい。 △ABCと △ACDを1つの平面上に広げ, 平面図形と して考えよう。 解答 (1) ACD において, 余弦定理により CD2=72+82-2・7・8cos∠CAD=25 CD> 0 であるから CD=5 (2) ACD に余弦定理を適用して B 82+52-72_1 COS∠ACD= 2.8.5 2 よって ∠ACD=60° B D B (3) 辺ACの C まわりに広げる A 7 8 8 D C COS ∠CAD (3) 右の図のように、平面上の四角 形ABCD について考える。 3点B, E, D が1つの直線上に B 8 7 81. ← 四面体 AB △ABC, 4 上に広げる E あるとき BE+ED は最小になる。 よって, BCD において,余弦 定理により 8 60°60° D ◆最短経路 5 120°- BD'=82+52-2・8・5cos <BCD=129 BD> 0 であるから BD=√129 点を結ぶ <-2BCD = ∠ACB+ したがって,求める最小値は 129

解決済み 回答数: 1
数学 高校生

例題33(2)の問題で、6<2a+5≦7のところで、なぜ≦になるのかがわかりません。

60 基本 例題 33 1次不等式の整数解不 00000 (1) 不等式 6x+8(6-x)>7を満たす2桁の自然数xの個数を求めよ。 (2)不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ るとき, 定数αの値の範囲を求めよ。 CHART & THINKING 1次不等式の整数解 数直線を利用 まずは, 与えられた不等式を解く。 基本 29,32 (1) 2桁の自然数 → x≧10 これと不等式の解を合わせて,条件を満たす整数xの値の 範囲を 10≦x≦n の形に表す。 この不等式を満たす整数の個数は? (2) 不等式の解は x<A の形となる。 数直線上でAの値を変化させ,x<A を満たす最大 の整数が6となるのはAがどのような値の範囲にあるかを 考えよう。 → x=6 は x<A を満たすが, x=7 は x<A を満たさないことが条件となる。 解答 実 (1) 6x+8(6-x) > 7 から 2x>-41 ゆえに x=20 6 A7% 展開して整理。 xは2桁の自然数であるから 10≦x≦20 求める自然数の個数は 不等号の向きが変わる。 2桁 解の吟味。 21 10 11 20 41 2 20-10+1=11 (個) (2)5(x-1)<2(2x+α) から x<2a+5 ① ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≦7 Cas ←展開して整理。 eas As 6<2a+5<7 とか 62a+5≦7 などとし ないように。等号の有 無に注意する。 のときである。 ゆえに 1<2a≦2 6 2a+5 7 よって1/12kas1 ①を満たす最大の整数 ← α=1 のとき, 不等式は x<7 で, 条件を満たす。 a = 1/2 のとき,不等式は x<6で,条件を満たさ ない。 PRACTICE 33® 5 9 x+ 1/18 1/3 x - 12/2 を満たす正の奇数xをすべて求めよ。 (1) 不等式 x+ 6 (2) 不等式 5(x-a)≦-2(x-3)を満たす最大の整数が2であるとき、定数αの値の 範囲を求めよ。

解決済み 回答数: 2
数学 高校生

(2)の[2]がなぜ解なしになるのかわかりません。

基本 例題 31 文字係数の不等式の導立 αを定数とする。 次の不等式を解け。 (1) ax+2>0 CHART & THINKING 00000 (2) ax-6>2x-3a+x 基本 29 文字係数の不等式 割る数の符号に注意 23 (1) 「ax +20 から ax-2 両辺を4で割ってx2」では誤り! αが正の数のときは上の解答でよいが、負の数のとき不等号の向きはどうなるだろうか? また,a=0 のときは両辺をαで割るということ自体ができない。 不等式 Ax>B を解くときは,A>0,A=0, A<0 で場合分けをする。(2)も同様。 解答 (1) ax+2>0 から ax>-2 [1] α>0 のとき x>- 2 a 不 まず, Ax>B の形に。 次に,A>0,A=0, A<0 で場合分け。 [2] a=0 のとき,不等式 0x>-2 はすべての実数xa=0 のときは,不等式 に対して成り立つから,解はすべての実数。 2 [3] α < 0 のとき x<- a (2) ax-6>2x-3α から よって ax-2x>-3a +6 (a-2)x>-3(a-2) > に a=0 を代入して検討 する。 すべての実数x に対して 0·x=0 である。 [1] a-2>0 すなわち>2 のとき 両辺を正の数 α-2で割って x>-3 [2] α-2=0 すなわち α=2のとき 不等式 0x>-30 には解はない。 [3] α-2<0 すなわち a < 2 のとき 両辺を負の数 α-2で割って x <-3 α-2は正の数なので, 不等号の向きはそのまま。 の向 ← α-2は負の数なので, 不等号の向きは逆になる。 INFORMATION 不等式 Ax > B の解 B 不等号の向き [1] A >0 のとき x> A は変わらない 例 [2] A=0 のとき B≧0 ならば解はない 0.x>5 解はない B<0 ならば解はすべての実数 0•x>0 解はない [3] A<0 のとき x <- B 不等号の向き A が逆になる 注意 不等式が Ax≧B の場合は, A= 0 のとき 0.x> -5 ・・・ 解はすべて 「B>0」ならば解はない, 「B≦0」 ならば解はすべての実数となる。 ③ PRACTICE 31Ⓡ αを定数とする。 次の不等式を解け。 の実数 (1) ax-1>0 (2) x-2>2a-ax

解決済み 回答数: 1
数学 高校生

数Ⅰ組み合わせの問題です。 (2)の解説おねがいします!

基本 例題 30 整数解の組の個数 (重複組合せの利用) (1) x+y+z=7 を満たす負でない整数解の組 (x, y, z) は何個あるか。 00000 (2)x+y+z=10 を満たす正の整数解の組 (x,y,z)は何個あるか。 IC HART & THINKING 整数解の組の個数と仕切りの活用 p.294 基本事項 3基本29 (1) 直接数え上げるのは大変である。 問題を読みかえて, x, y, zの異なる3個の文字から 重複を許して7個の文字を取り出すと考えよう。すなわち 7個の○と2個の仕切りの 順列を考え,仕切りで分けられた3つの部分の○の個数を,左から順にx,y,zとする。 〇〇〇一〇〇一〇〇には (x, y, z)=(3, 2, 2) 例えば 一〇〇〇〇〇〇〇には (x, y, z)=(0, 2, 5) がそれぞれ対応する。 (2)x,y,z正の整数であることに注意。 (1)の考え方では0となる場合も含むから x-1=X, y-1=Y, z-1=Z とおき、0であってもよい X≧0, 0, Z ≧ の整数解の場合 ((1) と同じ) に帰着させ る。これは, 10 個の○のうち, まず1個ずつを x, y, z に割り振ってから, 残った7個の 1個ずつをx,y,zに割 ○と2個の仕切りを並べることと同じである。 また,別解のように, 10 個の○と2個の仕切りを使う方法でも考えてみよう。 要 次の条 (1) 0 CHA 大小 (1) 3 ら (2. そ 重 別 A (c 解答 (1) 求める整数解の組の個数は, 7個の○と2個のを1列 に並べる順列の総数と同じであるからAPの道 9C7=9C2=36 (個) (2) x-1=X, y-1=Y, z-1=Z とおくと X≧0, Y≧0,Z≧0 このとき, x+y+z=10 から よって (X+1)+(Y+1)+(Z+1)=10 X+Y+Z=7, X≧0, Y≧0,Z≧0. 求める正の整数解の組の個数は, A を満たす 0 以上の整数 解 X, Y, Zの組の個数に等しいから, (1) の結果より 36個 (別解 10個の○を並べる。 このとき,○と○の間の9か所から2つを選んで仕切りを 入れ A|B|C ので、地点 としたときの, A, B, C の部分にある○の数をそれぞれx, y, z とすると, 解が1つ決まるから C2=36 (個) 別解 求める整数解の組の 個数は、3種類の文字 x, y, zから重複を許して7個取 る組合せの総数に等しいか 3H7=3+7-1C7=9C7 =gC2=36(個) x=X+1,y=Y+1, z=Z+1 を代入。 例えば 001 1000 (x, y, z)=(2, 5, 3) を表す。 (1)

解決済み 回答数: 1
数学 高校生

19の(2)の問題で、もし、分ける部屋が区別のつかない3つの部屋なら、3!で割る で合ってますか??

8889 例題 19 重複順列 00000 (1) 0, 1,2,3の4種類の数字を用いて, 3桁以下の正の整数は何個作れるか。 ただし,同じ数字を繰り返し用いてもよいものとする。 (2)7人を,2つの部屋 A, B に入れる方法は何通りあるか。 また, 区別をし ない2つの部屋に入れる方法は何通りあるか。 ただし, それぞれの部屋に は少なくとも1人は入れるものとする。 CHART & THINKING 1章 p.279 基本事項 3. 基本14 2 順列 重複順列 n™ (i) 数字を並べてできる整数 各桁の数字の条件に注目 最高位に0は使えないことに注意しよう。 0 以外の 4個から重複を許し 3通り て2個取って並べる 3桁 2桁 1桁, それぞれの場合に分けて考えよう。 (2) 区別をなくす場合 同じものは何通りあるか考える →4通り (前半) まず, 空の部屋があってもよいとして、後で空になる場合を除く。 (後半) 区別をなくすと同じ入れ方になるものは、例えば、次のような2通りずつある (=「ペア」で現れる)ことに注意しよう。 A B A B 例 と 1 2 3 4 5 6 7 567 1234 じゃない。 (1) 3桁の整数は, 百の位の数字が0以外であるから 3×4=48 (個) 2桁の整数は 3×4=12 (個), 1桁の整数は 3個 よって, 3桁以下の正の整数は 48+12+3=63 (個) 2桁の整数は百の位の数字が 0, 1桁の整数は百と十 の位の数字が 0 とすると, 3桁以下の整数は 43個 (別解 000 になる場合を除いて 43-1=63 (個) (2) 空の部屋があってもよいものとして7人をA,Bの部屋 に入れると,その方法は 27=128 (通り) 一方の部屋が空になる場合を除くと 128-2=126 (通り) A,Bの区別をなくすと 126-263 (通り) 百の位の数字の選び方 は0以外の3通りで、 十 の位、一の位は4種類の 数字のどれでもよい。 例えば 012 2桁の整数12 003...... 1桁の整数3 W 異なる2個から重複を許 して7個取り出して並 べる順列の総数と同じ。 区別をなくすと、 一致す る場合がそれぞれ2通 りずつある。 PRACTICE 193 (1) 0, 1,2,3,4,5の6種類の数字を用いて 4桁以下の正の整数は何個作れるか。 ただし、同じ数字を繰り返し用いてもよい。 (2) 9人を, 区別をしない2つの部屋に入れる方法は何通りあるか。 ただし, それぞ れの部屋には少なくとも1人は入れるものとする。

解決済み 回答数: 1