学年

質問の種類

数学 高校生

増減表の左にあるここで、M=αが〜 となっていて、式の次数を下げて代入を簡単にしていると思うんですけど、これってどうやったら思いつきますかね?いっぱい解くしかないですかね、

7 最大 最小 (近畿大薬 座標平面において, 4点A(-1, 1), B(-1, 0)C(1,0), D(2,2)と直線y=ma ぞれa,b,c,dとし, I'd とする. Im で表し,Iの最大値と最 一般には極値で最大・最小になるとは限らない 次の人はささいなことだが, 意外にも効 確かに極値で最大・最小となることを答案にはっきり書くようにしよう. 分数関数の極値を求めるとっておきの方法 f(x)=g(x) lim f( 本間の場合, m は実数全体を動くの 最小値があるとすればそれは極大値・極小値しか考えられないが, limf (m), m118 m [証明] ( {h(x)}2 .. h(x) f'(x)='(x) h(x)-g(x)h'(x) g(a) g'(a) h(a) h'(a) f(a)=g(a)_g' (α) h(a) h'(a) がx=αで極値をとりん (α)≠0ならば,f(α)=g′(a) である. h' (a) がx=αで0になるから,g' (α) h (α) 解答 |-m-1| a= b= 1-ml √m²+1 √m²+1 C= |m| √m²+1 |2m-2| d= であるから, 4点A √m²+1 距離 直線の 7m²-6m+5 I=2+2+c+d2= m²+1 f'(m)=- (=f(m) とおく) (14m-6)(m²+1)-(7m²-6m+5)2m (m2+1)2 6m²+4m-62(3m²+2m-3) ・① 6 M M² (m2+1)2 (m2+1)2 -1±10 3m²+2m-3=0の2解は であり,α, B(a<β) とおく. 3 f (m) は右のように増減し, limf(m)=7 m-too なので, m=αで最大, m=βで最小になる. ここで, m=αが①の分子を0にするから, (14a-6) (a2+1)=(7a2-6a+5)-2a 7a2-6a+5 14a-6 a²+1 2a : f(α)=- = m *** a .. B *** f'(m) + 0 f(m) 17 0 + + 9 3 =7--=7+ =7+(√10-1) α √10 +1 同様にf (B) を求め, 最大値はf(α)=6+√10. 最小値はf(B)=6-10 07 演習題(解答は p.58)

解決済み 回答数: 1
数学 高校生

導関数は微分係数の集まりで合ってますか?

2 導関数 定義関数 極 値 解説 微分係数 1 ① の定義は数学Ⅱで学んだこととまったく同じ なお, 関数f(x) について, x=α における微分係数 せるとき,f(x) は x=αで微分可能であるという。 関数y=f(x) がx=αで微分可能であるとき、曲線 (定!! 点A(a, f(a))における接線が存在し、多分係数 y=f(x)の点における接線 AT (右図参照)の傾き ■ ② 関数 f(x) がx=aで微分可能ならば、x=a るの証明 lim{f(x)-f(a)}=lim xaに x-a x-a x-a { ƒ (x) − f(a) • (x− a)} = ƒ'( 近づける よって limf(x)=f(a) p.829 x-a ゆえに、f(x)はx=αで連続である。 なお, 関数 f(x) が x=αで連続であっても, f(x)は 分可能とは限らない(次ページの基本例題 60 参照) の 関数導関数 f(a)のあつまり? どの)で関数f(x)が,ある区間のすべてのxの値で微分可能 成立するよう になる!! 可能であるという。 関数f(x) がある区間で微分可能 おのおのの値α に対して微分係数f(a) を対応させる この新しい関数をもとの関数f(x) の 導関数といい hya で表す。 関数y=f(x) からその導関数f(x) を求めることを, をな また, xの増分 4x に対する y=f(x)の増分f(x+ f(x) の導関数f(x)の定義の式は次のように表される 4y f(x+4x)-f( f'(x) = lim 4x-4x →0 =lim 4x10 4x

解決済み 回答数: 1
数学 高校生

例題72.2 f(0)の求め方はこれでもいいのでしょうか??

演習 例題 72 関数方程式の条件から導関数を求める 関数f(x) は微分可能で, f'(0) = a とする。 00000 (1) 任意の実数x, y に対して,等式f(x+y=f(x)+f(y) が成り立つとき, f(0), f'(x) を求めよ。 (2)任意の実数x,y に対して, 等式f(x+y=f(x)f(y), f(x)>0が成り立つ f(0) を求めよ。 また, f'(x) を α, f(x) で表せ。 演習 70 このようなタイプの問題では,等式に適当な数値や文字式を代入することがカギ となる。 f (0) を求めるには, x=0 や y = 0 の代入を考えてみる。 また,f'(x) は 定義 f'(x)=limf(x+h)-f(x) h→0 h に従って求める。 等式に y=h を代入して得られる式を利用して,f(x+h)-f(x)の部分を変形していく。 きを (5) (1) f(x+y=f(x)+f(y) ..... ① とする。 解答 ① に x=0 を代入すると f(y)=f(0)+f(y) f(0)=0 x=y=0を代入してもよい。 【アの両辺からf (y) を引く。 また, ① に y=h を代入するとf(x+h)=f(x)+f(h) f(x+h)=f(x)+f(h) から 12 ma ゆえに ゆえに f'(x)=lim f(x+h)−f(x) f(h) f(x+h)-f(x)=f(h) = =lim [大工製受] h→0 h h→0 h f(+h)-f() =lim f(x)+ho (2) f(x+y=f(x)f(y) f(0+h)-f(0) ②にx=y=0 を代入すると ② とする。 (*) lim -=f'(■) =f'(0)=a h→0 h h (*) f(0)=0 ...... f(0)=f(0)f(0) f(0) 2次方程式とみる。 よって f(0){f(0)-1}=0 (2 (0) f(0) > 0 であるから f(0)=1 また, ② に y=h を代入するとf(x+h)=f(x)f(h) 条件f(x)>0に注意。 大 (S) ゆえに BC [大 f'(x)=lim f(x+h)-f(x) h f(x){f(h)-1} =lim lim f(x)f(h)-f(x) h→0 h→0 h (E) h→0 (2) AB Ta f(0+h)-f(0) =f(x)・lim h h→0 dx f(0) = 1, f'(0)=α = f(x)• f'(0) =af (x) = < 8

未解決 回答数: 1