学年

質問の種類

数学 中学生

間違っていたら答え教えてください明日提出なので😭

■基本問題 15 三角形の角 99 三角形の角〉 三角形で、2つの内角が次の大きさのとき,残りの角の大きさを求めなさい。 また、 その三角形は、鋭角三角形, 直角三角形, 鈍角三角形のどれですか。 80 180 -135 55 45 735 35°. 55° 3 □(2) 40°, 65° □(3) 25° 30° 2 三角形の内角と外角 ①〉 次の図で,の大きさを求めなさい。 1A 180 90 14252 -38142 52° 45° 760 □(2) 180 D □(3) 180 A <x ・74 180 125 x=106 106 55 125° 55 C x=380 3 <三角形の内角と外角 ②> 次の図で, x, y の大きさを求めなさい。 B B 46° 50° C 96 80 100 x=45° (1) 704 -76 910 180 (2) A 180 x=76 61° -176 □(3) 30° D 95 福 DI 104 704 50 x x=300 A65° 85 区 科 コード y=250 85 学 51° X=95% 40° x95 180 通 501 【学法 B -85 502 B 85 95 03 D C 750 C45° 福 B 180 4) (5) y=50 62 16250 A (80 □ (6) (Po 180 77 103 -21° 93_ 887 F 32 y Tos 83 E xC 180 -77-77 703 [桜の 180 E F Bx=33° C △ 45° 33 32 200 40 x=1030 B y C D D x=103 B =740 4 〈平行線と三角形の角〉 次の図で,ℓ//m のとき, x, y の大きさを求めなさい。 y=1430 □1) l D <60° YE □(2) 77° l B I 150 m C 55° 60 B y=1150 76° m x=600 -y D x=760 y=27° □(3) 5 〈いろいろな図形と三角形の角〉 次の図で, xの大きさを求めなさい。 口1) 73 752 125 B52° 40% A Dx125 7=1250 33° □(2) 121° D 66° B ・C x=350 2005 ( 180 m ~18° 43 25° D 737 7=430 y=1370 4 (80 137 C □(3) H SA A <37° 40° G B F ~25° D '20° E 43 コード 601 602 603 学科 604 605 環境 606 を行いま

未解決 回答数: 1
数学 高校生

マーカー部分では判別式を使って何を示しているのでしょうか?教えてください🙇‍♂️

例題 112 接線に関する軌跡 放物線 y=x2 上の異なる2点P (1,2), Q(g, q2) における接線をそれぞれ l1, とし,その交点をRとする。 l と l2 が直交するように2点P, Qが動くとき 点Rの軌跡を求めよ。 [類名城大〕 ←例題 108 &2の方程式から交点の座標 (x, y) を求めると,xとyはともに,gの式で表される。 文字 g を消去する したがって, 方針は そこで用いるのは 2直線が垂直←(傾きの積)=-1 185 3 18 答案 x軸に垂直な接線は考えられないから,lの傾きをm とすると,その方程式は y=(x-p) すなわち y=m(x-p)+p2 x2=m(x-p)+p これと y=x2 を連立して 整理すると x²-mx+mp-p2=0 この2次方程式が重解をもつから, 判別式をDとすると D=(-m)2-4(mp-p2)=m²-4mp+4p²=(m-2p)2 P(p, p²) Q(g,g')) li l2 10. x R D=0 から (m-2p)=0 よって m=2p したがって, l の方程式は y=2p(x-p)+p² $73b5 y=2px-p² (1) 同様にして,l2の方程式は y=2qx-q² ②2 交点Rの座標 (x, y) は, 連立方程式 ① ② の解である。 ①をに おき換える。 と yを消去して整理すると 2(p-g)x=(p+α)(カーg) x=p+q J 2 y=2p⋅ b + q = p² = pq == 2 pag であるから これを①に代入して li⊥lz から 2p2g=-1 1 よって y=pq=- 4 また,p, q は 2次方程式 t2-2xt- ...... ③ の判別式を D' とすると D' 4 D = (-x)²-1⋅(-1) = x²+1 4 参考 左の答案は 今までに学習した 知識のみを用いて 接線の方程式を求 めているが,後で 学習する微分法を 用いるとより簡 単に求めることが できる(第6章微 ③ の解である。分法を参照)。 よって D'> 0 逆の確認。 ゆえに、任意のxに対して実数p,q(p≠q)が存在する。 1 したがって, 求める軌跡は 直線 y= =-4

解決済み 回答数: 1