学年

質問の種類

数学 中学生

歴史の問題です. 写真の(1)の問題が,なぜわざわざ “身分の低い” 貴族や武士など “自由に” 人材を登用したのかわかりません😵‍💫 教えてください🙏🙏

第2章 章末問題 B 中世の日本 しらかわてんのう 11086年,白河天皇が幼い皇子に位をゆずって上となり、院政という新しい政治を始めました。 次の資料Iと資 料Ⅱはこの院政に関するものです。 これらを読んで、あとの問いに答えなさい。 資料 I 資料Ⅱ せっしょう かんぱく 白河上皇のとき,院で政治が行われたので,摂政や関白はただ役職 についているだけの存在になった。 しかし, このときから古い政治 のありさまが一変したのである。 ( 『神皇正統記』) じんのうしょうとうき 白河上皇は,「賀茂川の水、サイコロの目 僧兵。これ らが私の思い通りにならないものだ」と、いつも申され ていたと伝えられる。 げんべいじょうすいき (『源平盛衰記』) □(1) 資料Iの下線部について,このようにいわれたのは,上皇の力が強くなり,天皇の力が弱まったからである。 かんたん 上皇は摂政や関白のかわりにどのような者を登用したか。 簡単に説明せよ。 ぶし □(2) 資料 IIの白河上皇の言葉には、院政が行われていた時期に,武士が用いられた原因がふくまれている。その原 してき 因を指摘した上で,武士が中央の政治の動きにかかわるようになったいきさつを、簡単に説明せよ。

解決済み 回答数: 1
物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
数学 高校生

(1)の解説のところで、X軸方向に1 y軸方向にー1動かしたのに、なぜ、式を作るときはそれぞれー1、+1をしているのでしょうか?💦 式を作るときたそれぞれ1. -1をしてしまいました🥲︎優しい方教えてください🙏よろしくお願いします💦

第2章 2次関数 53 Step Up 章末 3 (1) 放物線y=x2+ax + b をx軸方向に 1, y 軸方向に1だけ平行移動した放物線が 2点 (2,3) (3, 1) を通るとき, 定数a, bの値を求めよ (2) 放物線y=ax2+bx+c をx軸方向に3, y軸方向に5だけ平行移動したものが放物 線y=ax2-(2a+2)x-3a +1 で, 軸は直線x=3になった. このとき, 定数a, b, cの値を求めよ。 <考え方> (1) 平行移動した放物線の方程式において, 通る点の条件からα,bの値を求める. (2) 逆の移動を考え, 係数を比較する. (1) 放物線 y=x2+ax+b をx軸方向に1, y 軸方向に -1だけ平行移動した放物線の方程式は, +1=(x-1)+α(x-1)+6 y=x²+(a-2)x-a+b33 この放物線が, 437 a+b=3 ...... ① 点 (3.1) を通るから. yをy-(-1)=y+1 におき換える. 点 (2,3) を通るから, 3-4+2(a-2)-a+b<B> 1=9+3(a-2)-a+b)000 (120) Dy xをx-1, .01 2 a x-1 2a+b=-2 ...... ② 9.3 ① ② より ©α=-5, b=8 16 tis (2) 放物線y=ax²-(2a+2)x-34 +1 ...... ① の軸が 2) 直線 x=3 だから, 2a+2=6a これより, a= 2 -(2a+2) -=3 2a | 放物線y=ax2+bx+c の軸 b は、x=- 303 20 両辺に 24 を掛ける。

解決済み 回答数: 1